Subscribe free to our newsletters via your
. Space Industry and Business News .




BLUE SKY
To clean air and beyond: Catching greenhouse gases with advanced membranes
by Staff Writers
Kyoto, Japan (SPX) Sep 05, 2014


PIM-1 is a highly permeable membrane compared with commercially available ones. The orange balloon on the left illustrates this point as a higher volume of nitrogen gas is able to pass through PIM-1 into the balloon compared with the membrane on the right, connected to the pink balloon. Image courtesy Kyoto University iCeMS Public Relations.

Researchers in Japan have engineered a membrane with advanced features capable of removing harmful greenhouse gases from the atmosphere. Their findings, published in the British journal Nature Communications, may one day contribute to lower greenhouse gas emissions and cleaner skies.

Greenhouse gases, originating from industrial processes and the burning of fossil fuels, blanket the earth and are the culprits behind current global warming woes. The most abundant among them is carbon dioxide, which made up 84% of the United State's greenhouse gases in 2012, and can linger in Earth's atmosphere for up to thousands of years.

Countries all over the world are looking to reduce their carbon dioxide footprint. However, carbon dioxide is essentially a waste product with little immediate commercial value and large treatment costs. Therefore, new low-cost technologies are sorely needed to incentivize greenhouse gas capture by industry.

Easan Sivaniah - an associate professor at Kyoto University's Institute for Integrated Cell-Material Sciences (iCeMS) - led an international team of researchers from iCeMS and the University of Cambridge to create an advanced membrane capable of rapidly separating gases.

The membrane they worked on, referred to as PIM-1, is "typically embedded with a network of channels and cavities less than 2 nm in diameter that can trap gases of interest once they enter," said Qilei Song, who was involved in the study. "The only problem is that their intrinsic properties make them rather flimsy and their starting selectivity is weak."

To overcome PIM-1's weaknesses, Sivaniah's team heated PIM-1 at temperatures ranging from 120 to 450 C in the presence of oxygen, a process referred to as thermal oxidation. "Oxygen, under high temperatures, chemically reacts with PIM-1 to reinforce the strength of channels while controlling the size of so-called gate openings leading into the cavities, which allows for higher selectivity," said Song.

The resulting, improved PIM-1 was found to be twice as selective for carbon dioxide while allowing air to pass through it 100 times faster compared with commercially available polymers. PIM-1 can also be used for other applications such as capturing carbon dioxide from the burning of fossil fuels, enriching the oxygen content in air for efficient combustion engines, hydrogen gas production, and processes to generate plastic.

"Basically, we developed a method for making a polymer that can truly contribute to a sustainable environment," said Sivaniah. "And because it is affordable and long-lasting, our polymer could potentially cut the cost of capturing carbon dioxide by as much as 1000 times."

.


Related Links
Institute for Integrated Cell-Material Sciences, Kyoto University
The Air We Breathe at TerraDaily.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








BLUE SKY
Study of Aerosols Stands to Improve Climate Models
Los Angeles CA (SPX) Aug 07, 2014
Aerosols, tiny particles in the atmosphere, play a significant role in Earth's climate, scattering and absorbing incoming sunlight and affecting the formation and properties of clouds. Currently, the effect that these aerosols have on clouds represents the largest uncertainty among all influences on climate change. But now researchers from Caltech and the Jet Propulsion Laboratory ha ... read more


BLUE SKY
Space Traffic Control Architecture

Officials expand space-tracking website

Artificial membranes on silicon

Ultra-thin Detector Captures Unprecedented Range of Light

BLUE SKY
FirstNet-related Tactical LTE Communications System at Urban Shield Exercise

Intelsat General Extends Contract to Provide Satellite Capacity to Forces in Afghanistan

UAE contracts for enhanced tactical communications

Harris' tactical manpack radio gets NSA certification

BLUE SKY
SpaceX launches AsiaSat 6 satellite

SpaceX launches second satellite in the past month

Sea Launch Takes Proactive Steps to Address Manifest Gap

SpaceX rocket explodes during test flight

BLUE SKY
Lockheed Martin-Built gps IIR/IIR-M satellites reach 200 years of combined operational life

Australia approves GPS project

Too Early for Conclusions on Galileo Satellites Incident

Russia's Foton-M Satellite Landing Scheduled for September 1

BLUE SKY
IBC Engineered Materials to Supply BeralCast Castings for F-35

Flight MH17 hit by numerous 'high energy objects'

New phase of MH370 search to start in 2 weeks: Australia

Aircraft emissions to be regulated by EPA

BLUE SKY
A single molecule diode opens up a new era for sustainable and miniature electronics

Squeezed quantum communication

Layered graphene sandwich for next generation electronics

A low-energy optical circuit for a new era of technology

BLUE SKY
NASA's RapidScat: Some Assembly Required - in Space

NASA Awards Ozone Mapping and Profiling Suite Modification for JPS-2 Mission

Bardarbunga Belches

International Global Precipitation Measurement Mission Data Goes Public

BLUE SKY
New plan to avoid dumping dredge waste on Great Barrier Reef

Giant garbage patches help redefine ocean boundaries

2.8 bn risk ill health from home air pollution: research

Wastewater plants blamed for Mexico mass fish death




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.