Space Industry and Business News  
SOLAR DAILY
Tiny tweaks for big wins in solar cells
by Staff Writers
Thuwal, Saudi Arabia (SPX) Aug 27, 2019

This sequence captures the fabrication process of a perovskite thin film from precursor solution to solid film via the spin-coating deposition process.

Solar cells that rely on perovskites to harvest sunlight are bound to gain in energy conversion efficiency thanks to an atomic-level understanding of the structure-property relationship of these photovoltaic materials. Researchers from the KAUST Solar Center monitored the impact of compositional changes on the structural organization and photovoltaic properties of perovskite thin films in situ1, 2.

Hybrid perovskites have emerged as key components in low-cost, high-efficiency solar cells because they are cheaper and easier to process than traditional silicon-based solar cell materials. In addition, they exhibit unique optoelectronic characteristics, including high light absorption and a defect tolerance that lead to solar cells with maximum power-conversion efficiencies of 24 to 28 percent when used alone or in tandem combination with silicon. They also outperform single-junction silicon solar cells.

Solar cell performance and stability depend on the morphology of the thin films, especially their ability to crystallize in the so-called photoactive a-phase. Perovskites containing lead tend to combine various halides, such as the anionic forms of bromine and iodine, with mixtures of methylammonium, formamidinium, cesium and other cations. These have led to record conversion efficiencies and thermal stabilities compared with their single-halide, single-cation analogs. However, these mixed-halide, mixed-cation perovskite films have been characterized only through ex-situ postdeposition techniques. This limits the understanding of the mechanisms that govern their growth from their sol-gel precursor to their solid state and stalls attempts to improve device performance and stability.

Now, Stefaan De Wolf, his postdoc Kai Wang and coworkers have investigated the impact of cations, halides and antisolvent dripping on mixed-halide, mixed-cation perovskite films. The team tracked the films' structural evolution during the spin-coating deposition process using an in situ X-ray scattering technique. The X-ray technique probed the films at the atomic scale from their sol-gel precursor to the solid state and provided information about the formation of crystalline intermediates during the solidification. The researchers also incorporated the films into solar cells and evaluated the performance and stability of the resulting devices.

"Our study provides critical insights into the crystallization of the multicomponent systems toward high-performance perovskite solar cells," Wang says. Changes in the compositions of the halide and cation dramatically affected the solidification of the perovskite precursors during spin coating and the subsequent formation of the desired a-phase upon antisolvent addition.

The period needed to generate high-quality films by antisolvent addition ended when the sol-gel structure collapsed to produce crystalline by-products depending on the precursor mixture. Consequently, tuning the halide-cation mixture could delay this collapse, widening the antisolvent dripping window from a few seconds to several minutes. As well, simultaneously incorporating cesium and rubidium cations in the perovskite synergistically stimulated the formation of the a-phase. The length of this window showed little effect on resulting solar cell performance as long as the antisolvent was added within this period.

These findings suggest new directions for the development of perovskite formulations that can further stabilize the sol-gel state and promote its conversion to the desirable perovskite phase. "This is critical in achieving better-performing, reproducible, cost-efficient and scalable manufacturing of perovskite solar cells," Wang says.

The team is working on transferring this knowledge to other deposition technologies to progress toward market-ready perovskite solar cells.

Research paper


Related Links
King Abdullah University of Science and Technology (KAUST)
All About Solar Energy at SolarDaily.com


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


SOLAR DAILY
Materials that can revolutionize how light is harnessed for solar energy
New York NY (SPX) Aug 23, 2019
Researchers at Columbia University have developed a way to harness more power from singlet fission to increase the efficiency of solar cells, providing a tool to help push forward the development of next-generation devices. In a study published this month in Nature Chemistry, the team details the design of organic molecules that are capable of generating two excitons per photon of light, a process called singlet fission. The excitons are produced rapidly and can live for much longer than those gen ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

SOLAR DAILY
In praise of the big pixel: Gaming is having a retro moment

Rare earths are contested ground between US and China

Ecuador city recycling plastic bottles for bus tickets

Data rate increase on the International Space Station supports future exploration

SOLAR DAILY
Milestone for the future of networked satellite communications

AEHF-5 protected communications satellite now in transfer orbit

US Air Force awards contract for Enterprise Ground Services satellite operations

Russia launches Meridian military satellite from Plesetsk Cosmodrome

SOLAR DAILY
SOLAR DAILY
UK seeking to enlist 'Five Eyes' for rival Galileo GPS system

Tiny GPS backpacks uncover the secret life of desert bats

Evolution of space, 2SOPS prepares for GPS Block III

GPS signals no longer disrupted in Israeli airspace

SOLAR DAILY
State Department approves Taiwan's $8B deal for 66 F-16s

F-35s to get warfare system upgrades, laser shock peening to strengthen aircraft

N.H. Air National Guard base gets its first KC-46A tanker

Cathay Pacific's torrid week ends with shock CEO resignation

SOLAR DAILY
New perovskite material shows early promise as an alternative to silicon

Newfound superconductor material could be the 'silicon of quantum computers'

Quantum light sources pave the way for optical circuits

Researchers produce electricity by flowing water over extremely thin layers of metal

SOLAR DAILY
Monitoring the Matterhorn with millions of data points

Making microbes that transform greenhouse gases

Using lasers to visualize molecular mysteries in our atmosphere

Making sense of remote sensing data

SOLAR DAILY
Foreign trash 'like treasure' in Indonesia's plastics village

Foreign trash 'like treasure' in Indonesia's plastics village

Mussels, 'super-filters' that can help beat water pollution

'Toxic' Italian steel plant clean-up is a towering task









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.