Space Industry and Business News
CARBON WORLDS
Tiny poops in the ocean may help solve the carbon problem
illustration only
Tiny poops in the ocean may help solve the carbon problem
by Morgan Kelly
Hanover NH (SPX) Dec 11, 2024

A Dartmouth-led study proposes a new method for recruiting trillions of microscopic sea creatures called zooplankton in the fight against climate change by converting carbon into food the animals would eat, digest, and send deep into the ocean as carbon-filled feces.

The technique harnesses the animals' ravenous appetites to essentially accelerate the ocean's natural cycle for removing carbon from the atmosphere, which is known as the biological pump, according to the paper in Nature Scientific Reports.

It begins with spraying clay dust on the surface of the ocean at the end of algae blooms. These blooms can grow to cover hundreds of square miles and remove about 150 billion tons of carbon dioxide from the atmosphere each year, converting it into organic carbon particulates. But once the bloom dies, marine bacteria devour the particulates, releasing most of the captured carbon back into the atmosphere.

The researchers found that the clay dust attaches to carbon particulates before they re-enter the atmosphere, redirecting them into the marine food chain as tiny sticky pellets the ravenous zooplankton consume and later excrete at lower depths.

"Normally, only a small fraction of the carbon captured at the surface makes it into the deep ocean for long-term storage," says Mukul Sharma, the study's corresponding author and a professor of earth sciences. Sharma also presented the findings Dec. 10 at the American Geophysical Union annual conference in Washington, D.C.

"The novelty of our method is using clay to make the biological pump more efficient - the zooplankton generate clay-laden poops that sink faster," says Sharma, who received a Guggenheim Award in 2020 to pursue the project.

"This particulate material is what these little guys are designed to eat. Our experiments showed they cannot tell if it's clay and phytoplankton or only phytoplankton - they just eat it," he says. "And when they poop it out, they are hundreds of meters below the surface and the carbon is, too."

The team conducted laboratory experiments on water collected from the Gulf of Maine during a 2023 algae bloom. They found that when clay attaches to the organic carbon released when a bloom dies, it prompts marine bacteria to produce a kind of glue that causes the clay and organic carbon to form little balls called flocs.

The flocs become part of the daily smorgasbord of particulates that zooplankton gorge on, the researchers report. Once digested, the flocs embedded in the animals' feces sinks, potentially burying the carbon at depths where it can be stored for millennia. The uneaten clay-carbon balls also sink, increasing in size as more organic carbon, as well as dead and dying phytoplankton, stick to them on the way down, the study found.

In the team's experiments, clay dust captured as much as 50% of the carbon released by dead phytoplankton before it could become airborne. They also found that adding clay increased the concentration of sticky organic particles - which would collect more carbon as they sink - by 10 times. At the same time, the populations of bacteria that instigate the release of carbon back into the atmosphere fell sharply in seawater treated with clay, the researchers report.

In the ocean, the flocs become an essential part of the biological pump called marine snow, Sharma says. Marine snow is the constant shower of corpses, minerals, and other organic matter that fall from the surface, bringing food and nutrients to the deeper ocean.

"We're creating marine snow that can bury carbon at a much greater speed by specifically attaching to a mixture of clay minerals," Sharma says.

Zooplankton accelerate that process with their voracious appetites and incredible daily sojourn known as the diel vertical migration. Under cover of darkness, the animals - each measuring about three-hundredths of an inch - rise hundreds, and even thousands, of feet from the deep in one immense motion to feed in the nutrient-rich water near the surface. The scale is akin to an entire town walking hundreds of miles every night to their favorite restaurant.

When day breaks, the animals return to deeper water with the flocs inside them where they are deposited as feces. This expedited process, known as active transport, is another key aspect of the ocean's biological pump that shaves days off the time it takes carbon to reach lower depths by sinking.

Earlier this year, study co-author Manasi Desai presented a project conducted with Sharma and fellow co-author David Fields, a senior research scientist and zooplankton ecologist at the Bigelow Laboratory for Ocean Sciences in Maine, showing that the clay flocs zooplankton eat and expel do indeed sink faster. Desai, a former technician in Sharma's lab, is now a technician in the Fields lab.

Sharma plans to field-test the method by spraying clay on phytoplankton blooms off the coast of Southern California using a crop-dusting airplane. He hopes that sensors placed at various depths offshore will capture how different species of zooplankton consume the clay-carbon flocs so that the research team can better gauge the optimal timing and locations to deploy this method - and exactly how much carbon it's confining to the deep.

"It is very important to find the right oceanographic setting to do this work. You cannot go around willy-nilly dumping clay everywhere," Sharma says. "We need to understand the efficiency first at different depths so we can understand the best places to initiate this process before we put it to work. We are not there yet - we are at the beginning."

In addition to Desai and Fields, Sharma worked with the study's first authors Diksha Sharma, a postdoctoral researcher in his lab who is now a Marie Curie Fellow at Sorbonne University in Paris, and Vignesh Menon, who received his master's degree from Dartmouth this year and is now a PhD student at Gothenburg University in Sweden.

Additional study authors include George O'Toole, professor of microbiology and immunology in Dartmouth's Geisel School of Medicine, who oversaw the culturing and genetic analysis of bacteria in the seawater samples; Danielle Niu, who received her doctorate in earth sciences from Dartmouth and is now an assistant clinical professor at the University of Maryland; Eleanor Bates '20, now a PhD student at the University of Hawaii at Manoa; Annie Kandel, a former technician in Sharma's lab; and Erik Zinser, an associate professor of microbiology at the University of Tennessee focusing on marine bacteria.

Research Report:Organoclay flocculation as a pathway to export carbon from the sea surface

Related Links
Dartmouth College
Carbon Worlds - where graphite, diamond, amorphous, fullerenes meet

Subscribe Free To Our Daily Newsletters
Tweet

RELATED CONTENT
The following news reports may link to other Space Media Network websites.
CARBON WORLDS
Tourism among leading contributors to global carbon emissions
Los Angeles CA (SPX) Dec 11, 2024
A study led by the University of Queensland reveals that greenhouse gas emissions from tourism are growing over twice as fast as emissions from the rest of the global economy. Associate Professor Ya-Yen Sun of UQ's Business School highlighted that the surge in travel demand has pushed tourism's carbon emissions to represent 9% of global totals. "Without urgent interventions in the global tourism industry, we anticipate annual increases in emissions of 3 to 4% meaning they will double every 2 ... read more

CARBON WORLDS
Unlocking the potential of collagen modulation for biomaterials in human health

Metal scrap upcycled into high-value alloys with solid phase manufacturing

Stretchable, flexible, recyclable. This plastic is fantastic

Speaking crystal AI predicts atomic arrangements to aid material discovery

CARBON WORLDS
Pentagon collaborates with Movius on secure communication solutions

Viasat secures $568M contract to enhance C5ISR capabilities for US Defense

ST Engineering iDirect launches innovative multi-orbit satellite connectivity

Lockheed Martin prepares TacSat for 2025 launch to enhance space connectivity

CARBON WORLDS
CARBON WORLDS
GPS alternative for drone navigation leverages celestial data

Deciphering city navigation AI advances GNSS error detection

China advances next-generation BeiDou satellite navigation system

Space Systems Command and U.S. Navy achieve major MGUE program milestone

CARBON WORLDS
Airbus US Space and Defense partners with Aerostar to advance stratospheric ISR technologies

Uncrewed aircraft systems traffic management expands beyond line of sight

U.S., South Korea to flex aerial might during May airshow

NASA Scientific Balloon Flights to Lift Off From Antarctica

CARBON WORLDS
Precise control of quantum states with extreme ultraviolet lasers

Rethinking the quantum chip

Researchers design new materials for advanced chip manufacturing

Bringing the power of tabletop precision lasers for quantum science to the chip scale

CARBON WORLDS
China launches Sea Sentinel 1 satellite for remote sensing

SatVu secures ESA funding for high-resolution thermal imaging project in energy sector

NASA selects SwRI for NOAA space weather instrument development

Constellr secures long-term partnership with DLR

CARBON WORLDS
Four Zimbabwe rhinos die after drinking polluted water

What bees reveal about environmental contamination through honey

Air pollution in India tied to significant mortality rates

Students, employees told to stay home due to air pollution in Iran

Subscribe Free To Our Daily Newsletters




The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.