Space Industry and Business News  
INTERNET SPACE
Tiny optical elements could one day replace traditional refractive lenses
by Staff Writers
Chicago IL (SPX) Apr 03, 2019

Northwestern University researchers have demonstrated a versatile imaging platform based on fully reconfigurable metalenses made from silver nanoparticles and a polymer. During a single imaging session, the device can evolve from a single-focus lens to a multi-focal lens that can produce more than one image at any programmable 3D position.

A Northwestern University research team has developed tiny optical elements from metal nanoparticles and a polymer that one day could replace traditional refractive lenses to realize portable imaging systems and optoelectronic devices.

The flat and versatile lens, a type of metalens, has a thickness 100 times smaller than the width of a human hair.

"This miniaturization and integration with detectors offers promise for high-resolution imaging in devices from small wide-angle cameras to miniature endoscopes," said Teri W. Odom, who led the research. She is the Charles E. and Emma H. Morrison Professor of Chemistry in the Weinberg College of Arts and Sciences and chair of the department of chemistry.

The properties of metalenses depend on the rationally designed arrangement of nanoscale units. Metalenses have emerged as an attractive option for flat lenses but are currently limited by their static, as-fabricated properties and their complex and expensive fabrication.

For imaging operations such as zooming and focusing, however, most metalenses cannot adjust their focal spots without physical motion. One major reason, Odom said, is that the building blocks of these lenses are made of hard materials that cannot change shape once fabricated. It is difficult in any materials systems to adjust nanoscale-sized features on demand to obtain tunable focusing in metalenses.

"In this study, we demonstrated a versatile imaging platform based on fully reconfigurable metalenses made from silver nanoparticles," said Odom, a member of Northwestern's International Institute for Nanotechnology. "During a single imaging session, our metalens device can evolve from a single-focus lens to a multi-focal lens that can form more than one image at any programmable 3D position."

The paper, titled "Lattice-Resonance Metalenses for Fully Reconfigurable Imaging," was published recently by the journal ACS Nano.

The Northwestern team built their lenses out of an array of cylindrical silver nanoparticles and a layer of polymer patterned into blocks on top of the metal array. By simply controlling the arrangement of the polymer patterns, the nanoparticle array could direct visible light to any targeted focal points without needing to change the nanoparticle structures.

This scalable method enables different lens structures to be made in one step of erasing and writing, with no noticeable degradation in nanoscale features after multiple erase-and-write cycles. The technique that can reshape any pre-formed polymer pattern into any desirable pattern using soft masks made from elastomers.

Research paper


Related Links
Northwestern University
Satellite-based Internet technologies


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


INTERNET SPACE
Polythene films strong as aluminum could be used for windows, screens and phones
Warwick UK (SPX) Apr 02, 2019
Research led by Professor Ton Peijs of WMG at the University of Warwick and Professor Cees Bastiaansen at Queen Mary University of London, has devised a processing technique that can create transparent polythene film that can be stronger as aluminium but at a fraction of the weight, and which could be used use in glazing, windscreens, visors and displays in ways that add strength and resilience while reducing weight. In a new research paper entitled "Glass-like transparent high strength polyethyle ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

INTERNET SPACE
Indian satellite destruction created 400 pieces of debris, endangering ISS: NASA

Group teams up to combat growing space debris threat, protect satellites in orbit

Indian satellite destruction creates debris field of 'space junk'

Adhesive formed from bee spit and flower oil could form basis of new glues

INTERNET SPACE
US Army selects Hughes for cooperative effort to upgrades NextGen Friendly Forces System

United Launch Alliance launches WGS-10 satellite for USAF

United Launch Alliance set to launch WGS-10 for US Air Force

Raytheon awarded $406M for Army aircraft radio system

INTERNET SPACE
INTERNET SPACE
China, Arab states eye closer cooperation on satellite navigation to build "Space Silk Road"

Second GPS III satellite arrives at Cape Canaveral ahead of July launch

GPS 3 space vehicle 02 "Magellan" arrives in Florida; prepares for July launch

Russia plans to launch Glonass-M satellite in mid-May

INTERNET SPACE
In hidden mountain air base, Albania stores MiGs for sale

F-35s for Turkey on hold as U.S. approves sales for Australia, Norway

Naval teams narrow factors in physiological episodes on jets

Northrop Grumman to upgrade mission computers on U.S., Bahrain helicopters

INTERNET SPACE
Air Force Research Lab poised to change the face of high-power electronics

Copper-based alternative for next-generation electronics

Extremely accurate measurements of atom states for quantum computing

Metal nanoclusters can be used as semiconductors: Key properties observed for first time

INTERNET SPACE
Researchers unveil effects of dust particles on cloud properties

Experts reveal that clouds have moderated warming triggered by climate change

Free satellite data available to help tackle public sector challenges

Two Chinese Earth observation satellites put into service

INTERNET SPACE
New York state prepares to ban plastic bags

Canned air and water-spraying drones: Smog remedies

Toxic air tears apart families in Mongolia

Asia's pollution exodus: Firms struggle to woo top talent









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.