Space Industry and Business News  
ROBO SPACE
Tiny motor can 'walk' to carry out tasks
by Staff Writers
Boston MA (SPX) Jul 08, 2019

This walking microrobot was built by the MIT team from a set of just five basic parts, including a coil, a magnet, and stiff and flexible structural pieces.

Years ago, MIT Professor Neil Gershenfeld had an audacious thought. Struck by the fact that all the world's living things are built out of combinations of just 20 amino acids, he wondered: Might it be possible to create a kit of just 20 fundamental parts that could be used to assemble all of the different technological products in the world?

Gershenfeld and his students have been making steady progress in that direction ever since. Their latest achievement, presented this week at an international robotics conference, consists of a set of five tiny fundamental parts that can be assembled into a wide variety of functional devices, including a tiny "walking" motor that can move back and forth across a surface or turn the gears of a machine.

Previously, Gershenfeld and his students showed that structures assembled from many small, identical subunits can have numerous mechanical properties. Next, they demonstrated that a combination of rigid and flexible part types can be used to create morphing airplane wings, a longstanding goal in aerospace engineering. Their latest work adds components for movement and logic, and will be presented at the International Conference on Manipulation, Automation and Robotics at Small Scales (MARSS) in Helsinki, Finland, in a paper by Gershenfeld and MIT graduate student Will Langford.

Their work offers an alternative to today's approaches to constructing robots, which largely fall into one of two types: custom machines that work well but are relatively expensive and inflexible, and reconfigurable ones that sacrifice performance for versatility.

In the new approach, Langford came up with a set of five millimeter-scale components, all of which can be attached to each other by a standard connector. These parts include the previous rigid and flexible types, along with electromagnetic parts, a coil, and a magnet. In the future, the team plans to make these out of still smaller basic part types.

Using this simple kit of tiny parts, Langford assembled them into a novel kind of motor that moves an appendage in discrete mechanical steps, which can be used to turn a gear wheel, and a mobile form of the motor that turns those steps into locomotion, allowing it to "walk" across a surface in a way that is reminiscent of the molecular motors that move muscles.

These parts could also be assembled into hands for gripping, or legs for walking, as needed for a particular task, and then later reassembled as those needs change. Gershenfeld refers to them as "digital materials," discrete parts that can be reversibly joined, forming a kind of functional micro-LEGO.

The new system is a significant step toward creating a standardized kit of parts that could be used to assemble robots with specific capabilities adapted to a particular task or set of tasks. Such purpose-built robots could then be disassembled and reassembled as needed in a variety of forms, without the need to design and manufacture new robots from scratch for each application.

Langford's initial motor has an ant-like ability to lift seven times its own weight. But if greater forces are required, many of these parts can be added to provide more oomph. Or if the robot needs to move in more complex ways, these parts could be distributed throughout the structure. The size of the building blocks can be chosen to match their application; the team has made nanometer-sized parts to make nanorobots, and meter-sized parts to make megarobots. Previously, specialized techniques were needed at each of these length scale extremes.

"One emerging application is to make tiny robots that can work in confined spaces," Gershenfeld says. Some of the devices assembled in this project, for example, are smaller than a penny yet can carry out useful tasks.

To build in the "brains," Langford has added part types that contain millimeter-sized integrated circuits, along with a few other part types to take care of connecting electrical signals in three dimensions.

The simplicity and regularity of these structures makes it relatively easy for their assembly to be automated. To do that, Langford has developed a novel machine that's like a cross between a 3-D printer and the pick-and-place machines that manufacture electronic circuits, but unlike either of those, this one can produce complete robotic systems directly from digital designs. Gershenfeld says this machine is a first step toward to the project's ultimate goal of "making an assembler that can assemble itself out of the parts that it's assembling."


Related Links
Massachusetts Institute of Technology
All about the robots on Earth and beyond!


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


ROBO SPACE
'Robot blood' powers robotic fish in Cornell laboratory
Washington (UPI) Jun 20, 2019
Robot's still aren't conscious, but now they have blood, thanks to engineers at Cornell University. Scientists have developed a robotic fish powered by "robot blood." The hydraulic liquid circulatory system allows the robot to use, store and transfer energy. "In nature we see how long organisms can operate while doing sophisticated tasks. Robots can't perform similar feats for very long," Rob Shepherd, associate professor of mechanical and aerospace engineering at Cornell, said in a news ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

ROBO SPACE
Researchers verify 70-year-old theory of turbulence in fluids

Half of Indian Anti-Satellite Test Debris Still Orbiting in Space - Harvard Astronomer

Machine Learning Tool Searches Star Data for Likely Exoplanet Hosts

Researchers see around corners to detect object shapes

ROBO SPACE
AEHF-5 encapsulated and prepared for launch

Corps begins fielding mobile satellite communication system

AFRL demonstrates world's first daytime free-space quantum communication enabled by adaptive optics

Harris to build new satellite connection system prototype for USAF

ROBO SPACE
ROBO SPACE
Lockheed Martin Delivers GPS III Contingency Operations

China to complete BeiDou-3 satellite system by 2020

China's satellite navigation industry scale to exceed 400 billion yuan in 2020

China to launch six to eight BDS-3 satellites this year

ROBO SPACE
Giant Beijing airport set to open on eve of China's 70th birthday

State Department approves $250.4M deal for Morocco F-16 sustainment

Aircraft Engines are Getting Quieter-So Are Our Wind Tunnels

Lockheed nets $106.1M for Apache night vision targeting sensor systems

ROBO SPACE
Atomic 'patchwork' using heteroepitaxy for next generation semiconductor devices

Mysterious Majorana quasiparticle is now closer to being controlled for quantum computing

Hong Kong's extradition law jolts business community

Laser technique could unlock use of tough material for next-generation electronics

ROBO SPACE
Benin leaps into 21st century with new national map

NASA helps warn of harmful algal blooms in lakes, reservoirs

TanDEM-X reveals glaciers in detail

Airbus built SEOSAT Ingenio is finished and ready for testing

ROBO SPACE
Thousands march in Madrid to save anti-pollution plan

Scores ill, schools closed in Malaysia due to toxic fumes

Among world's worst polluters, ASEAN vows to tackle ocean waste

Protesters urge ASEAN leaders to ban trash imports









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.