Space Industry and Business News  
Tiny High-Frequency Cryocooler Is Cold And Efficient

An example of a lightweight, high efficiency cryocooler.
by Staff Writers
Washington DC (SPX) Feb 21, 2007
A new cryogenic refrigerator has been demonstrated at the National Institute of Standards and Technology (NIST) that operates at twice the usual frequency, achieving a long-sought combination of small size, rapid cooling, low temperatures and high efficiency. The cryocooler could be used to chill instruments for space and military applications, and is a significant step toward even smaller, higher-frequency versions for integrated circuits and microelectromechanical (MEM) systems.

The new cryocooler, described in the current issue of Applied Physics Letters,* is a "pulse tube" design that uses oscillating helium gas to transport heat, achieving very cold temperatures (223 degrees C or -370 degrees F) in a matter of minutes without any cold moving parts.

With cold components about 70 by 10 millimeters in size, the device operates at 120 cycles per second (hertz), compared to the usual 60 Hz, which enables use of a much smaller oscillator to generate gas flow, as well as faster cool-down. Because changing the size of one component can negatively affect others, the researchers used a NIST-developed computer model to find the optimal combination of frequency, pressure and component geometry.

The new cryocooler is as efficient as the low-frequency version because it uses a higher average pressure and a finer screen mesh in the regenerator-a stainless steel tube packed with screening that provides a large surface area for transfer of heat between the gas and the steel.

This is a key part of the cooling process. The helium gas is pre-cooled by the screen in the regenerator before entering the pulse tube, where the gas is expanded and chilled. The cold gas reverses its direction and carries heat away from the object to be cooled before it enters the regenerator again and picks up stored heat from the screen.

Then it is compressed again for a new cycle. Compared to a prototype NIST mini-cryocooler flown on a space shuttle in 2001, the new version is about the same size but gets much colder.

Pulse tube cryocoolers are more durable than conventional (Stirling) cryocoolers typically used in applications where small size is essential. These applications include cooling infrared sensors in space-based instruments used to measure temperature and composition of the atmosphere and oceans for studies of global warming and weather forecasting, and cooling night-vision sensors for tanks, helicopters, and airplanes.

With continued work, the NIST researchers hope to increase operating frequencies to 1,000 Hz, which could enable development of chip-scale cryocoolers. Many difficult technical challenges need to be overcome to attain frequencies that high while maintaining high efficiency, such as the design of regenerators with pores just 10 micrometers in diameters.

*S. Vanapalli, M. Lewis, Z. Gan, and R. Radebaugh. 120 Hz pulse tube cryocooler for fast cooldown to 50 K. Applied Physics Letters. 90, 072504 (2007)

Related Links
National Institute of Standards and Technology (NIST)
All about the technology of space and more
Powering The World in the 21st Century at Energy-Daily.com
Powering The World in the 21st Century at Energy-Daily.com



Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News


Wild Grass Could Hold Key To Clean Fuels Of The Future
San Francisco (AFP) Feb 20, 2007
A wild grass found in Asia and Africa could hold the key to dreams of providing an alternative to fossil fuels blamed for global warming, experts said Friday. Miscanthus, a perennial grass native to subtropical and tropical regions of Africa and southern Asia, was the ideal plant for producing ethanol at a lower cost than corn, currently the most widespread source of the fuel.







  • Hong Kong Internet Access Fully Restored
  • New Damage And Bad Weather Delay Asian Internet Repairs
  • Asia Turns To Time-Tested Solution For Damaged Internet Cables
  • Chinese Web Could Remain Slow Until Late January

  • United Launch Alliance First East Coast Launch A Total Success
  • ILS Proton To Launch Ciel-2 Satellite To Serve North America
  • Arianespace And Astrium Sign Agreement On Ariane 5 Production Increase
  • THEMIS Launch Delayed To Friday

  • Can UABC Take Russian Aircraft-Makers Out Of Spin
  • Superjet To Be Tested For Strength
  • Anger As Britons Face Air Tax Hike
  • Bats In Flight Reveal Unexpected Aerodynamics

  • Australia To Host US MUOS Listening Post
  • DRS Tech To Provide Satellite Bandwidth For Defense Information Network
  • Raytheon To Deliver Navy Multiband Terminal Satellite Communication System For Testing
  • Interim Polar System Reaches Full Operational Capability

  • Introducing The Coolest Spacecraft In The Universe
  • Colorado To Develop Innovative Insulation For Space
  • Raytheon Wins Contract For Terminal High Altitude Area Defense Radar
  • Lockheed Martin Upgrade To Extend Life Of Romanian Radars 15 To 20 Years

  • Alan Stern Appointed To Lead Science Mission Directorate
  • Former Space Agency Chief May Head RSC Energia
  • Northrop Grumman Names Teri Marconi VP Of Combat Avionics For Electronic Systems
  • Northrop Grumman Appoints Joseph Ensor Vice President Of Surveillance And Remote Sensing

  • 3D Upstart Eyes Google Earth With Helicopter
  • ESA Celebrates 15 Years Of Near-Real Time Data Delivery In Earth Observation
  • Gascom To Launch 4 Smotr Low-Orbit Remote Sensing Satellites
  • GeoEye Makes Final Debt Payment For The Purchase Of Space Imaging

  • GPS Upgrade Will Require Complicated Choreography
  • China Puts New Navigation Satellite Into Orbit
  • GMV Signs Galileo Contracts Worth Over 40 Million Euros
  • Port Of Rotterdam To Use SAVI Networks Savitrak For Cargo Security And Management Service

  • The content herein, unless otherwise known to be public domain, are Copyright Space.TV Corporation. AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space.TV Corp on any Web page published or hosted by Space.TV Corp. Privacy Statement