Subscribe free to our newsletters via your
. Space Industry and Business News .




FARM NEWS
Tillage and reduced-input rotations affect runoff from agricultural fields
by Staff Writers
Washington DC (SPX) Jun 14, 2013


This shows runoff and erosion on a reduced-input watershed during a storm in a soybean crop year. Credit: Photo courtesy of Martin Shipitalo.

No-till management practices can reduce soil erosion, but evidence suggests they can also lead to increased runoff of dissolved phosphorus from soil surfaces. Meanwhile, farmers looking to avoid herbicides often have to combat weeds with tillage, which causes erosion. With all of the tradeoffs of different management systems, which one should growers use? To answer that question, researchers from the USDA Agricultural Research Service compared nutrient and sediment loss from no-till, conventional tillage, and reduced-input rotation watersheds in a study published online in Soil Science Society of America Journal.

By keeping a protective layer of plant matter on the soil surface, no-till practices reduce the loss of soil and phosphorus (P) attached to soil particles. But no-till requires herbicides to control weeds, and even after adoption of the practice by many farmers, harmful algal blooms were still occurring in surface waters. It looked as if no-till, while decreasing particulate P loss, was leading to increased runoff of dissolved P.

"Normally when you apply P-containing fertilizers, you would incorporate them into the soil," says Martin Shipitalo, lead author of the study. "With no-till, you're just broadcasting it on the soil surface, leading to high P concentrations at the surface. Even if you get less particulate loss, runoff will pick up that dissolved P that's highly concentrated at the soil surface."

Shipitalo and his team decided to look at data from a 16-year experiment to compare soil and nutrient runoff in watersheds managed in three different ways - no-till, conventional tillage (chisel-till), and reduced-input rotations. "The idea with the reduced-input rotation was to have a conservation practice that worked for farmers who do not want to use herbicides or large amounts of mineral fertilizers," explains Shipitalo.

In the current study, researchers provided most of the nutrients to crops in the reduced-input watersheds by planting red clover and spreading manure instead of fertilizers. They minimized the amount of bare soils and used just a shallow disking instead of total inversion tillage to leave some crop residue on the soil surface. While herbicides were used in the experiment, they aren't necessary because the light tilling and in-row cultivation that was done kept weeds under control.

"Reduced-input rotations strike a medium between conventional tillage and no-till," says Shipitalo. "And they could easily be adapted to be organic rotations."

As was expected, the researchers found that soil loss was lowest in no-till watersheds. Reduced-input fields, however, had the highest levels of soil loss. While levels were still below annual soil loss tolerance values, reduced-input practices led to soil loss levels of more than twice those from no-till fields.

To address the concern of dissolved P loss from no-till fields, the researchers compared runoff from conventional tillage and no-till watersheds. While the average loss of total dissolved P from no-till was slightly higher than from conventional tillage, the loss was still quite small. Also, average total P loss from no-till watersheds was actually smaller than that from conventional tillage watersheds.

The lack of large differences in P loss from these two management practices may in part be explained by something unexpected - earthworms. "The biology of the soil changes with long-term no-till," explains Shipitalo. "By leaving residue cover, you increase organic matter, and you increase earthworm populations."

But how are earthworms affecting transport of P? Earthworms can ingest and redistribute soil, and they enhance soil structure creating more stable aggregates and allowing water to move more rapidly into the soil. It is also possible that earthworm activity mixes up soil moving surface-applied P deeper into the soil and away from potential runoff.

So which management practice is best for farmers? No-till practices didn't lead to increased dissolved P runoff in this study, but they require herbicide use. Reduced-input rotations don't require herbicides, but they led to higher levels of soil loss. The authors suggest further work looking at other reduced-input rotations, perhaps some that use less tillage to tease out even more management options.

"It will depend on the situation and the philosophy of the growers," says Shipitalo. "There isn't a one-size-fits-all solution or a certain practice that is best for everyone."

While there may not be one solution, the increased understanding of the different practices and their tradeoffs provide a basis for farmers to choose a crop management system that is best for them, their crops, and their land.

The full article is available for no charge for 30 days following the date of this summary. View the abstract here.

.


Related Links
American Society of Agronomy
Farming Today - Suppliers and Technology






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








FARM NEWS
URI, firm developing techniques for tuna aquaculture
Narragansett, R.I. (UPI) Jun 12, 2013
Yellowfin tuna swim in a tank University of Rhode Island's Bay Campus in the first U.S. effort to breed tuna in a land-based aqua farm, the university said. "Worldwide demand for tuna increases yearly, even as tuna stocks are dwindling precipitously," Terry Bradley, a URI professor of fisheries and aquaculture, said in a release Wednesday. "What we're trying to do is produce fish in cap ... read more


FARM NEWS
NSBRI Industry Forum Launches Grant Opportunity To Drive Spaceflight Product Development

Filmmaking magic with polymers

Chilean, U.S. firms join effort to expand e-waste recycling

Space Debris - One Solution

FARM NEWS
Northrop Grumman Delivers Second Hosted Payload for Enhanced Polar System

Lockheed Martin Supports Realtime Battlespace View For USAF Aerial War Games

Mutualink Platform to be Deployed by US DoD during JUICE 2013

General Dynamics to Deliver U.S. Army's Newest Tactical Ground Station Intelligence System

FARM NEWS
Mitsubishi Heavy and Arianespace conclude MOU on commercial launches

Sea Launch IS-27 FROB Report Complete

Europe launches record cargo for space station

New chief urges Ariane 5 modification for big satellites

FARM NEWS
Russia Set to Launch Four GLONASS Satellites This Year

Carnegie Mellon Method Uses Network of Cameras to Track People in Complex Indoor Settings

Orbcomm Offers Dual-Mode Telematics Solution For Heavy Equipment Industry

Lockheed Martin Completes Functional Testing of First GPS III Satellite Bus Electronic Systems

FARM NEWS
Google to beam Internet from balloons

Boeing aviation forecast sets scene for crowded skies

Lockheed Martin Receives JASSM Contract for Additional Integration onto Finish Air Force F-18

F-35 Supplier in Israel Delivers First Advanced Composite Component

FARM NEWS
First large-scale production of III-V semiconductor nanowire

2-D electronics take a step forward

Study suggests second life for possible spintronic materials

Spintronics approach enables new quantum technologies

FARM NEWS
SMOS maps record soil water before flood

Landsat Satellite Looks Back at El Paso, Forward to a New Mission

NASA Builds Sophisticated Earth-Observing Microwave Radiometer

Big data from space: Imagery of Rome delivered in near real time

FARM NEWS
Potentially 'catastrophic' changes underway in Canada's northern Mackenzie River Basin

China's heartland delivers pollution punch: study

MBARI research shows where trash accumulates in the deep sea

Urban Indians grow concerned about pollution: survey




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement