Space Industry and Business News  
TIME AND SPACE
Three-way battles in the quantum world
by Staff Writers
Zurich, Switzerland (SPX) Apr 18, 2016


An artificial quantum world of atoms and light: Atoms (red) spontaneously arrange themselves in a checkerboard pattern as a result of the complex interplay between short- and long-range interactions. Image courtesy ETH Zurich and Tobias Donner. For a larger version of this image please go here.

When water in a pot is slowly heated to the boil, an exciting duel of energies takes place inside the liquid. On the one hand there is the interaction energy that wants to keep the water molecules together because of their mutual attraction. On the other hand, however, the motional energy, which increases due to heating, tries to separate the molecules.

Below the boiling point the interaction energy prevails, but as soon as the motional energy wins the water boils and turns into water vapour. This process is also known as a phase transition. In this scenario the interaction only involves water molecules that are in immediate proximity to one another.

A team of researchers led by Tilman Esslinger at the Institute for Quantum Electronics at ETH Zurich, and Tobias Donner, a scientist in his group, have now shown that particles can be made to "feel" each other even over large distances. By adding such long-range interactions the physicists were able to observe novel phase transitions that result from energetic three-way battles.

Artificial quantum worlds
The physicists did not, of course, perform their experiments in a cooking pot, but rather in an artificially created quantum world called a "quantum simulator". To do so, the researchers cooled a tiny cloud of rubidium atoms to temperatures just above absolute zero and then caught them in a crystal-like lattice made of laser beams.

The interaction energy stems from collisions between atoms that move back and forth between lattice sites. The motional energy of the atoms, on the other hand, can be controlled through the intensity of the laser beams, which determines how easily the atoms can move inside the lattice.

Finally, in order to bring about an interaction between atoms that are far apart, Renate Landig, a PhD student in Esslinger's group, and her colleagues used a technical trick. Using two highly reflecting mirrors they built a resonator that ensured that light particles scattered by one of the atoms would fly through the rubidium cloud several times.

In that way, sooner or later all the atoms in the cloud come into contact with the scattered photon. They thus "feel" the presence of the original atom that first deviated the photon. This feeling over a distance is tantamount to an effective long-range interaction. How strongly the atoms interact in this way can be exactly controlled through the frequency of the laser beams.

"Using this trick we now have three competing energy scales in our system: besides the motional and interaction energies there is, in addition, the energy associated with the long-range interaction", explains Landig. "By varying the motional energy and the long-range interaction energy, we are able to study a number of novel quantum phase transitions."

First order phase transitions
The researchers were already familiar with some of the possible phase transitions. For instance, when the long-range interaction is very small and the motional energy is increased little by little, the phase of the rubidium cloud changes from a Mott insulator, with one immobile atom sitting on each lattice site, to a superfluid, in which atoms can move completely freely.

If, by contrast, the researchers increase the long range interaction energy, something completely different happens. At a particular strength of that interaction the atoms spontaneously arrange themselves in a checkerboard pattern, with one empty lattice site between two atoms.

"The peculiarity of this phase transition, which is similar to that between water and water vapour, is that it's a first order transition", Donner emphasizes. In such phase transitions a particular property of a substance changes suddenly, whereas second order phase transitions, which are the type of transitions that have been detected in artificial quantum systems up to now, are characterized by a gradual change.

Supersolidity detected
The physicists were also able to induce another unusual phase transition by making both the motional energy and the long-range interaction energy very large. In that case, too, a checkerboard pattern appeared inside the lattice, but this time there was phase coherence between the atoms - in other words, their quantum mechanical wave functions were synchronized.

Phase coherence is usually only observed when the atoms are relatively free to roam, as is the case, for instance, in the superfluid state. The coexistence of a checkerboard pattern and phase coherence at the same time indicates that one is dealing with a supersolid phase. The hybrid state of supersolidity was theoretically predicted as much as fifty years ago, but thus far unambiguously detecting it has proved difficult.

In the future, Esslinger and his collaborators will use their quantum simulator to study such exotic effects more closely. The researchers' aim is to get a general idea of quantum phenomena in increasingly complex systems. This, in turn, goes hand in hand with the development and investigation of materials with special properties.

The research was undertaken in conjunction with TherMiQ, a European research project examining the thermodynamics of mesoscopic open quantum systems.

Landig R, Hruby L, Dogra N, Landini M, Mottl R, Donner T, Esslinger T: Quantum phases from competing short- and long-range interactions in an optical lattice, Nature, 11 April 2016, doi: 10.1038/nature17409


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
ETH Zurich
Understanding Time and Space






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
TIME AND SPACE
Exotic quantum effects can govern the chemistry around us
Warsaw, Poland (SPX) Apr 14, 2016
Objects of the quantum world are of a concealed and cold-blooded nature: they usually behave in a quantum manner only when they are significantly cooled and isolated from the environment. Experiments carried out by chemists and physicists from Warsaw have destroyed this simple picture. It turns out that not only does one of the most interesting quantum effects occur at room temperature and highe ... read more


TIME AND SPACE
Brittle is better for making cement

Catalyst could make production of key chemical more eco-friendly

Graphene is both transparent and opaque to radiation

Breaking metamaterial symmetry with reflected light

TIME AND SPACE
Harris supplies tactical radios to African country

In-orbit delivery of Laos' 1st satellite launched

Upgrade set for Britain's tactical communications system

Airbus continues operating German military satellites

TIME AND SPACE
SpaceX lands rocket on ocean platform for first time

SpaceX cargo arrives at crowded space station

Orbital ATK receives NASA order for rockets

NASA Progresses Toward SpaceX Resupply Mission to Space Station

TIME AND SPACE
Satellite touchdown in run up to Galileo launch

Russian Glonass Satellite Scheduled for Launch on May 21

Glonass navigation system's ground infrastructure successfully completed

China launches 22nd BeiDou navigation satellite

TIME AND SPACE
NASA supercomputer simulations help improve aircraft propulsion design

Chinese capital leaving as a jet plane

Air Force releases study on future air superiority

Boeing, Iran airlines in talks on new aircraft sales

TIME AND SPACE
Nano-control of light pioneers new paths

Advance may make quantum computing more practical

Novel way of transferring magnetic information

Cooling chips with the flip of a switch

TIME AND SPACE
Twiss interferometry offers new approach for remote sensing

Thales, Airbus DS tapped for French military maps

Sentinel-3A feels the heat

UAE monitors Dubai coastline changeds since 2009

TIME AND SPACE
Combined effects of copper and climate can be deadly for amphibians

Moss is useful bioindicator of cadmium air pollution, new study finds

Botero sculptures centerstage in Colombia pollution protest

Pollution woes to keep 40 percent of cars off Mexico City roads









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.