Space Industry and Business News  
TECH SPACE
The world's shortest laser pulse
by Staff Writers
Zurich, Switzerland (SPX) Nov 01, 2017


Thomas Gaumnitz, postdoctoral fellow in the group of ETH professor Hans Jakob Worner with the setup that generates the shortest laser pulses in the world.

In order to fully understand the dynamics during a chemical reaction, scientists must be able to study all movements of atoms and molecules on their basic time scale.

Molecules rotate in the range of picoseconds (10-12 s), their atoms vibrate in the range of femtoseconds (10?15 s), and the electrons move in the range of attoseconds (10-18 s). ETH professor Hans Jakob Worner and his group have now succeeded in generating the world's shortest laser pulse with a duration of only 43 attoseconds. More generally speaking, this laser pulse is the shortest controlled event that has ever been created by humans. The researchers can now observe in high detail how electrons move within a molecule or how chemical bonds are formed.

Starting from an infrared laser, the researchers generate a soft X-ray laser pulse with a very large spectral bandwidth. As a result, various elements including phosphorus and sulphur can be directly observed by exciting their inner-shell electrons. Both elements are present in biomolecules, and it is now possible to observe them with unprecedented time resolution.

But what is the advantage of being able to observe the reaction steps now with even higher resolution? "The faster a charge transfer can take place, the more efficiently a reaction can proceed", says Prof. Worner. The human eye for example is very efficient when it comes to converting photons into nerve signals.

In rhodopsin, a visual pigment in the retina, the photosensitive molecule retinal is prearranged in such a way that its structure can change extremely fast through the absorption of only a single photon. This enables the visual process even in twilight. A much slower reaction would render vision impossible, because the energy of the photon would be converted to heat in only a few picoseconds.

Attosecond spectroscopy could contribute to the development of more efficient solar cells since it is now for the first time possible to follow the process of excitation through sunlight up to the generation of electricity step by step. A detailed understanding of the charge transfer pathway could help optimizing the efficiency of the next generation of photosensitive elements.

Optical manipulation of the reaction process
Attosecond laser spectroscopy is not only suitable for mere observation, Prof. Worner explains. Chemical reactions can also be directly manipulated: Using a laser pulse can alter the course of a reaction - even chemical bonds can be broken by stopping the charge shift at a certain location in the molecule.

Such targeted interventions in chemical reactions have not been possible until now, since the time scale of electron movement in molecules was previously unreached.

The group of Prof. Worner is already working on the next generation of even shorter laser pulses. These will make it possible to record even more detailed images, and thanks to a wider X-ray spectrum even more elements can be probed than before. Soon it will be possible to follow the migration of electrons in more complex molecules with an even higher time resolution.

Gaumnitz T, Jain A, Pertot Y, Huppert M, Jordan I, Ardana-Lamas F, Worner HJ. Streaking of 43-attosecond soft-X-ray pulses generated by a passively CEP-stable mid-infrared driver. Optics Express, Vol. 25, Issue 22 (2017) doi: 10.1364/OE.25.027506

TECH SPACE
Chemical treatment improves quantum dot lasers
Los Alamos NM (SPX) Oct 18, 2017
One of the secrets to making tiny laser devices such as opthalmic surgery scalpels work even more efficiently is the use of tiny semiconductor particles, called quantum dots. In new research at Los Alamos National Laboratory's Nanotech Team, the ~nanometer-sized dots are being doctored, or "doped," with additional electrons, a treatment that nudges the dots ever closer to producing the desired l ... read more

Related Links
ETH Zurich
Space Technology News - Applications and Research


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


Comment using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TECH SPACE
Turning a material upside down can sometimes make it softer

Nanoscale textures make glass invisible

New property found in unusual crystalline materials

MIT students fortify concrete by adding recycled plastic

TECH SPACE
82nd Airborne tests in-flight communication system for paratroopers

NRL clarifies valley polarization for electronic and optoelectronic technologies

Harris supplying tactical radios to Navy, Marines

SES GS to Provide More MEO-enabled SATCOM Solutions for U.S. Government

TECH SPACE
TECH SPACE
Airobot supplies positioning technology to single largest container terminal in Europe

Galileo in place for launch: then there were four

Lockheed Martin's first GPS III Satellite receives green light from Air Force

exactEarth Announces Agreement with Alltek Marine to Expand Small Vessel Tracking Service Offering

TECH SPACE
Highly flexible wings tested

Boeing keeps tough line on Bombardier as earnings fall

UChicago astrophysicists to catch particles from deep space on NASA balloon mission

U.S. Air Force deploying a dozen F-35s to Japan

TECH SPACE
Deep-depletion: A new concept for MOSFETs

Resistive memory components the computer industry can't resist

Nanoelectronic breakthrough may lead to more efficient quantum devices

Research team led by NUS scientists breaks new ground in memory technology

TECH SPACE
GOES-T Satellite "Brains" and "Body" Come Together

Google Earth helps researchers identify 400 ancient stone gates in Saudi Arabia

First joint France-China satellite to study oceans

Satellites map photosynthesis at high resolution

TECH SPACE
Chile to ban plastic bags in coastal regions

Schools closed over fears of toxic wind from Italy steel plant

Levels of microplastics in the Baltic have remained constant for 30 years

India top court bans dirty fuel to fight Delhi's bad air









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.