Subscribe free to our newsletters via your
. Space Industry and Business News .




ENERGY NEWS
The physics of champagne bubbles and our future energy needs
by Staff Writers
Washington DC (SPX) Dec 24, 2014


After multi-bubble nucleation, Ostwald ripening occurs because of the 'coarsening' interaction between bubbles until only a single bubble remains. Image courtesy H.Inaoka/RIKEN.

Uncork a bottle of champagne, and as the pressure of the liquid is abruptly removed, bubbles immediately form and then rapidly begin the process of "coarsening," in which larger bubbles grow at the expense of smaller ones.

This fundamental nonequilibrium phenomenon is known as "Ostwald ripening," and though it is most familiar for its role in bubbly beverages, it is also seen in a wide range of scientific systems including spin systems, foams and metallic alloys.

On a much larger scale, Ostwald ripening can be observed in a power-generating turbine. Most power stations rely on boilers to convert water into steam, but the phase transition involved is highly complex. During the phase transition, no one is exactly sure what's occurring inside the boiler -- especially how bubbles form.

So a team of researchers from the University of Tokyo, Kyusyu University and RIKEN in Japan set out to find an answer. In the Journal of Chemical Physics, from AIP Publishing, the researchers describe how they were able to simulate bubble nucleation from the molecular level by harnessing the K computer at RIKEN, the most powerful system in Japan.

At the heart of their work were molecular dynamics simulations. The basic concept behind these simulations is to put some virtual molecules in a box, assign them initial velocities and study how they continue moving -- by using Newton's law of motion to determine their position over time. There were major challenges in doing this, explained Hiroshi Watanabe, a research associate at the University of Tokyo's Institute for Solid State Physics.

"A huge number of molecules, however, are necessary to simulate bubbles -- on the order of 10,000 are required to express a bubble," Watanabe said. "So we needed at least this many to investigate hundreds of millions of molecules -- a feat not possible on a single computer."

The team, in fact, wound up simulating a whopping 700 million particles, following their collective motions through a million time steps -- a feat they accomplished by performing massively parallel simulations using 4,000 processors on the K computer. This was, to the best of their knowledge, the first simulation to investigate multi-bubble nuclei without relying on any artificial conditions.

"In the past, while many researchers wanted to explore bubble nuclei from the molecular level, it was difficult due to a lack of computational power," explained Watanabe. "But now, several petascale computers -- systems capable of reaching performance in excess of one quadrillion point operations per second -- are available around the world, which enable huge simulations."

The team's key finding? The time evolutions of bubbles are well described by a classical theory developed during the 1960s, a mathematical framework called "LSW theory" after its three developers -- Lifshift and Slyozov in Soviet Union and Wagner in Germany. While LSW theory has been shown to hold true for other systems, like ice crystals growing in so-called freezer-burned ice cream, prior to this work nobody had ever shown it also works for describing gas bubbles in liquid.

"While the nucleation rate of droplets in condensation is well predicted by the classical theory, the nucleation rates of bubbles in a superheated liquid predicted by the theory are markedly different from the values observed in experiments," Watanabe said. "So we were expecting the classical theory to fail to describe the bubble systems, but were surprised to find that it held up."

In other words, although Watanabe and colleagues had hoped their simulation would provide clues to help clarify why the classical theory fails to predict the rate of bubble nucleation, it remains a mystery.

As far as implications of the team's work, an enhanced understanding of the behavior of bubbles is very important for the field of engineering because it may enable the design of more efficient power stations or propellers.

What's next for the researchers? After exploring cavitation, they're now shifting their focus to boiling. "Bubbles appear when liquid is heated as 'boiling,' or as 'cavitation' when the pressure of the liquid decreases," said Watanabe. "Simulating boiling is more difficult than cavitation at the molecular level, but it will provide us with new knowledge that can be directly applied to designing more efficient dynamo."

The team is also targeting a polymer solution. "Surfactants make bubbles stable, while defoamers make them unstable," he added. "Recent developments in computational power will allow us to simulate these kinds of complex systems at the molecular level."

"Ostwald ripening in multiple-bubble nuclei," is authored by Hiroshi Watanabe, Masaru Suzuki, Hajime Inaoka and Nobuyasu Ito. It will appear in the Journal of Chemical Physics on December 18, 2014 (DOI: 10.1063/1.4903811).


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
American Institute of Physics







Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








ENERGY NEWS
High Energy Costs Retire at Lutheran Crossings with American DG Energy
Waltham MA (SPX) Dec 24, 2014
American DG Energy has announced that it has reached an agreement to provide an On-Site Utility solution to Lutheran Crossings Enhanced Living in Moorestown, New Jersey. Under the terms of the agreement, Lutheran Crossings will receive a portion of its energy from a Tecogen 75 kW combined heat and power system (CHP). Known throughout the industry for their reliability and efficiency, Tecog ... read more


ENERGY NEWS
Breakthrough in predictions of pressure-dependent combustion reactions

Back to future with Roman architectural concrete

Earth's most abundant mineral finally has a name

'Mind the gap' between atomically thin materials

ENERGY NEWS
MUOS-3 Encapsulated In Launch Vehicle Fairing

Cubic Corporation acquires DTECH Labs

Australia, U.S. order military radio systems

Lockheed Martin opens MUOS application development facility

ENERGY NEWS
Soyuz Installed at Baikonur, Expected to Launch Wednesday

Russian Space Agency Pushes Back Earth Imaging Satellite Launch to Friday

State Spaceports Receive Federal Funding

Arianespace sets new operational benchmarks on its latest Soyuz success

ENERGY NEWS
GPS analysts bridge gap between launch, orbit

China to Roll Out Own Global Navigation System by 2020

NIST study 'makes the case' for RFID forensic evidence management

Galileo satellite recovered and transmitting navigation signals

ENERGY NEWS
Airbus will not scrap A380s despite order drought: CEO

Air China orders 60 Boeing 737s for more than $6 bn

BOC Aviation adds two more Boeing jets to earlier order spree

3 countries eye pooled acquisition, operation of airlifters

ENERGY NEWS
Switching to spintronics

Germanium comes home to Purdue for semiconductor milestone

Room temp quantum optics chip geneates tunable photon-pair spectrum

Unusual electronic state found in new class of unconventional superconductors

ENERGY NEWS
Salinity matters

CryoSat extends its reach on the Arctic

China publishes images captured by CBERS-4 satellite

ADS to build Falcon Eye Earth-observation system for UAE

ENERGY NEWS
Pilot plant for the removal of extreme gas charges from deep waters

Bangladesh development 'threatens fragile Sundarbans

More research links pollution exposure during pregnancy to autism

Super-bacteria found in Rio bay ahead of 2016 Olympic sailing




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.