Space Industry and Business News  
TIME AND SPACE
The material that obscures supermassive black holes
by Staff Writers
Canary Islands, Spain (SPX) Oct 03, 2017


Galaxy NGC 1068 can be seen in close-up in this view from NASA's Hubble Space Telescope. This active black hole -shown as an illustration in the zoomed-in inset- is one of the most obscured known, as it is surrounded by extremely thick clouds of gas and dust that can be characterized using infrared and X-ray observations.

Black holes appear to play a fundamental role in how galaxies evolve throughout their life during a phase in which they are active and consume material from the galaxy itself. During this phase, the galaxy hosts an active galactic nucleus (AGN), and the effect that this nuclear activity produces in the galaxy is known as AGN feedback.

This feedback can take place in different forms: the AGN can heat, disrupt, consume and remove the gas available to form new stars, preventing further galaxy growth. In fact, AGN feedback is now required by simulations of galaxy formation to explain the observations of massive galaxies at cosmological distances. "If AGN feedback is not accounted for in the simulations", explains Cristina Ramos, "the predicted number of massive galaxies when the universe was younger is much higher than those that are observed".

Directly studying the influence of nuclear activity on galaxy evolution is challenging because of the different spatial scales and timescales involved in the two processes. Massive galaxies host extremely compact supermassive black holes of millions or even billions of solar masses in their nuclei.

It is estimated that the phases of nuclear activity last for a short period of time, between one and a hundred million years, whereas galaxy evolution processes, such as bulge growth or bar formation last much longer. Thus, in order to study the connection between the AGN and the host galaxy, "we need," explains Claudio Ricci, "to look at the nucleus of galaxies, where the material that links them is found. This material consists mainly of gas and dust, which are normally studied in the infrared and X-ray band."

In this review, Cristina Ramos Almeida, researcher at the Instituto de Astrofisica de Canarias (IAC), and Claudio Ricci, astrophysicist at the Institute of Astronomy of the Universidad Catolica de Chile, tried to give a comprehensive view of the current understanding, thanks to infrared and X-ray studies, of nuclear obscuration in AGN.

This has greatly improved in the last decade thanks to observing facilities such as CanariCam on the Gran Telescopio CANARIAS (GTC), located at the Roque de los Muchachos Observatory (Garafia, La Palma) and the Very Large Array Interferometer (VLTI) in the infrared range, as well as X-ray satellites like NuSTAR, Swift/BAT and Suzaku.

"We now know", adds Cristina Ramos, "that this nuclear material is more complex and dynamic than we thought a few years ago: it is very compact, formed by gas and dusty clouds orbiting the black hole and its properties depend on the AGN luminosity and accretion rate. Moreover, it is not an isolated structure but appears connected with the galaxy via outflows and inflows of gas, like streams of material flowing as part of a cycle. This gas flow cycle keeps feeding the black hole and regulates the formation of new stars in the galaxy".

Very recently, the Atacama Large Millimeter/submillimeter Array (ALMA) has recently imaged for the first time the nuclear obscuring material in an active galaxy. ALMA operates in the millimiter and sub-millimeter range, and the latter traces the coolest dust and gas surrounding AGN.

In the case of the galaxy NGC 1068, ALMA has shown that this material is distributed in a very compact disc-like shape of 7-10 parsecs (pc) diameter and, in addition to the regular rotation of the disk, there are non-circular motions that correspond to high-velocity gas outflowing from the galaxy nucleus. "Over the next decade, the new generation of infrared and X-ray facilities will contribute greatly to our understanding of the structure and physical properties of the nuclear material", concludes Claudio Ricci.

Research paper

TIME AND SPACE
UCLA physicists propose new theories of black holes from the very early universe
Los Angeles CA (SPX) Sep 04, 2017
UCLA physicists have proposed new theories for how the universe's first black holes might have formed and the role they might play in the production of heavy elements such as gold, platinum and uranium. A long-standing question in astrophysics is whether the universe's very first black holes came into existence less than a second after the Big Bang or whether they formed only millions of y ... read more

Related Links
Instituto de Astrofisica de Canarias
Understanding Time and Space


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


Comment using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TIME AND SPACE
Dosage formulations for anti-radiation drug being developed

Ultracold atoms point toward an intriguing magnetic behavior

UV-irradiated amorphous ice behaves like liquid at low temperatures

The 3-D selfie has arrived

TIME AND SPACE
82nd Airborne tests in-flight communication system for paratroopers

Spectra Airbus SlingShot Partnership Extension

Airbus prepares the future European Governmental Satellite Communications programme

Northrop awarded contract for support of Air Force communications system

TIME AND SPACE
TIME AND SPACE
exactEarth Announces Agreement with Alltek Marine to Expand Small Vessel Tracking Service Offering

BeiDou navigation to cover Belt and Road countries by 2018

China's BeiDou-3 satellites get new chips

US Air Force Awards Lockheed Martin GPS M-Code Early Use Ground System Upgrade Contract

TIME AND SPACE
Pilot shortage plagues Air Force

Airbus opens first plane-completion centre in China

Israel receives F-35 aircraft

UK warns Boeing over Bombardier trade row

TIME AND SPACE
Laser can control a current in graphene within one femtosecond

New quantum computer chip uses sounds waves to store data

Move towards 'holy grail' of computing by creation of brain-like photonic microchips

China-backed fund to buy British chipmaker after US snub

TIME AND SPACE
Scientists monitor Silicon Valley's underground water reserves - from space

OSIRIS-REx views Pacifica on Earth Flyby

How aerial thermal imagery is revolutionizing archaeology

A Box of 'Black Magic' to Study Earth from Space

TIME AND SPACE
I.Coast toxic spill victims launch new Dutch court bid

Are plastic nanoparticles causing brain damage in fish?

The waste-collecting cyclists who caught the UN's eye

Nestle tackles 'ocean-polluter' tag in Philippines









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.