Space Industry and Business News  
STELLAR CHEMISTRY
The center of the Milky Way
by Staff Writers
Nuremberg, Germany (SPX) Mar 22, 2016


The H.E.S.S. array in Namibia. Image courtesy C. Fohr, MPIK.

Researchers have been mapping the centre of our galaxy in very-high-energy gamma rays using these telescopes - the most sensitive of their kind - for over 10 years. The results were published in the journal Nature on 16 March 2016.

The earth is constantly bombarded by high energy particles from space. Together these particles - protons, electrons and atomic nuclei - are known as cosmic radiation or cosmic rays. The question of which astrophysical sources produce this cosmic radiation has remained a mystery to researchers for over a century.

The problem is that the particles are electrically charged and are therefore deflected in interstellar magnetic fields, making it impossible to identify the astrophysical sources that produce them based on their arrival direction. Fortunately, however, the particles interact with light and gas in the neighbourhood of their sources, producing very-high-energy gamma rays that travel to the earth in straight lines. 'These gamma rays allow us to visualise the sources of cosmic radiation in the sky,' says Christopher van Eldik, a professor at FAU's Erlangen Centre for Astroparticle Physics (ECAP) and deputy director of the H.E.S.S. collaboration.

When a very-high-energy gamma ray reaches the earth's atmosphere, it produces a flash of light that can be detected by reflector telescopes equipped with fast photo-detectors. Over the past few decades, over 100 sources of very-high-energy gamma rays have been identified in the sky using this technology. H.E.S.S., located in Namibia and operated by 150 researchers from 12 countries, is currently the most sensitive instrument that is able to record these rays. FAU researchers, who are responsible for analysing data as well as management tasks in the planning and technical co-ordination of the observations, make a significant contribution to the success of the project.

Researchers already know that cosmic rays with energies of up to approximately 100 teraelectronvolts (1 TeV = 1012 eV) - around 1000 billion times larger than the energy of visible light - are produced in the Milky Way. However, theoretical arguments and direct measurements of cosmic rays indicate that the cosmic ray factories in our galaxy should be able to accelerate particles to energies of at least one petaelectronvolt (1 PeV = 1000 TeV = 1015 eV).

While many sources that accelerate particles to multi-TeV energies have been discovered in recent years, so far the search for the sources of the highest energy galactic cosmic rays has remained unsuccessful.

An analysis of further observations made by H.E.S.S. between 2004 and 2013, which has now been published in the journal Nature, sheds new light on the processes that accelerate cosmic rays in the centre of the galaxy. In 2006, H.E.S.S. uncovered a very compact source of gamma rays in the region of the galactic centre, as well as diffuse very-high-energy gamma-ray emission from the surrounding area.

This diffuse radiation, produced when cosmic rays interact with gases in this area, provided a clear indication that there must be a source of cosmic radiation in this region. However, at the time the researchers were unable to identify it.

'In recent years we have not only collected new data but also refined the techniques we use to analyse it. We are therefore now able to determine the spatial structure and the energy of cosmic radiation in the centre of the galaxy for the first time,' Christopher van Eldik explains.

'The unparalleled measurements show that there is a particle accelerator in the centre of the galaxy that is capable of accelerating protons to energies of up to one petaelectronvolt. The researchers have dubbed such a source a pevatron - in analogy to the Tevatron, the first man-made particle accelerator that achieved an energy of one teraelectronvolt.

The centre of the Milky Way contains many objects that are capable of producing high-energy cosmic rays. 'However, the supermassive black hole located at the centre of the galaxy, called Sagittarius A*, is the most plausible source of the PeV protons,' says Felix Aharonian (Max-Planck Institute for Nuclear Physics Heidelberg, MPIK, and Dublin Institute for Advanced Studies, DIAS), adding that, 'Several possible acceleration regions can be considered, either in the immediate vicinity of the black hole, or further away, where a fraction of the material falling into the black hole is ejected back into the environment, thereby initiating the acceleration of particles.'

Based on the measurements of the the gamma-ray emission from the centre of the galaxy, the researchers believe that it is likely that Sagittarius A* is accelerating protons to PeV energies. However, the measurements also show that this source alone cannot account for the total flux of cosmic rays detected on earth.

'If, however, Sagittarius A* was more active in the past,' Christopher van Eldik explains, 'then it could indeed be responsible for the bulk of today's galactic cosmic rays that are observed on earth.' If true, this would dramatically influence the century-old debate on the origins of galactic cosmic rays, as the theory that their components are primarily accelerated to PeV energies by remnants of supernovae - shock waves that occur after the explosion of massive stars - would have to be revised to take this into account.

Acceleration of Petaelectronvolt Protons in the Galactic Centre - H.E.S.S. collaboration - Nature advance online publication, 16 March 2016 - Corresponding authors: F. Aharonian, S. Gabici, E. Moulin and A. Viana; DOI 10.1038/nature17147


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
University of Erlangen-Nuremberg
Stellar Chemistry, The Universe And All Within It






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
STELLAR CHEMISTRY
Students map Milky Way with dwarf stars
London, UK (SPX) Mar 18, 2016
Two astronomy students from Leiden University have mapped the entire Milky Way galaxy in dwarf stars for the first time. They show that there are a total of 58 billion dwarf stars, of which seven per cent reside in the outer regions of our Galaxy. This result is the most comprehensive model ever for the distribution of these stars. The findings appear in a new paper in Monthly Notices of the Roy ... read more


STELLAR CHEMISTRY
International research team achieves controlled movement of skyrmions

Light helps the transistor laser switch faster

INRS takes giant step forward in generating optical qubits

Wrangler Supercomputer speeds through big data

STELLAR CHEMISTRY
In-orbit delivery of Laos' 1st satellite launched

Upgrade set for Britain's tactical communications system

Airbus continues operating German military satellites

BAE Systems supports Navy communications and electronics

STELLAR CHEMISTRY
Launch of Dragon Spacecraft to ISS Postponed Until April

ILS and INMARSAT Agree To Future Proton Launch

Soyuz 2-1B Carrier Rocket Launched From Baikonur

ISRO launches PSLV C32, India's sixth navigation satellite

STELLAR CHEMISTRY
ISRO Developing 'Front-End Chip' for Satellite Navigation System

India to Launch Sixth Navigational Satellite on Thursday

Lockheed Martin building next generation of military GPS satellites

Traffic app says not at fault for Israel troops losing way

STELLAR CHEMISTRY
Lockheed Closes in On Mach 6 Hypersonic Aircraft Technology

High G-force training system on way for fighter pilots

12 dead in Indonesian military chopper crash

Canadian Coast Guard receives final Bell 429 helicopter

STELLAR CHEMISTRY
Overlooked resistance may inflate estimates of organic-semicon performance

Protected Majorana states for quantum information

DNA 'origami' could help build faster, cheaper computer chips

Magnetic chips could dramatically increase energy efficiency of computers

STELLAR CHEMISTRY
Russia Prepared to Offer Launch Options for Morocco's Satellite

Jason-3 Begins Mapping Oceans, Sees Ongoing El Nino

Satellites to help check unauthorised construction at monuments

Improving farm and water management with DMC constellation

STELLAR CHEMISTRY
Beirut trash clean-up begins as critics cry foul

Mercury rising?

'Chemical Chernobyl': activists say toxic dump threatens St. Petersburg

Mexico City lifts air pollution alert









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.