Subscribe free to our newsletters via your
. Space Industry and Business News .




ROBO SPACE
The Secret's in the (Robotic) Stroke
by Staff Writers
Brooklyn NY (SPX) Nov 05, 2013


illustration only

Recent studies from two research teams at the Polytechnic Institute of New York University (NYU-Poly) demonstrate how underwater robots can be used to understand and influence the complex swimming behaviors of schooling fish. The teams, led by Maurizio Porfiri, associate professor of mechanical and aerospace engineering at NYU-Poly, published two separate papers in the journal PLOS ONE.

These studies are the latest in a significant body of research by Porfiri and collaborators utilizing robots, specifically robotic fish, to impact collective animal behavior.

In collaboration with doctoral candidate Paul Phamduy and NYU-Poly research scholar Giovanni Polverino, Porfiri designed an experiment to examine the interplay of visual cues and flow cues-changes in the water current as a result of tail-beat frequency-in triggering a live golden shiner fish to either approach or ignore a robotic fish.

They designed and built two robotic fish analogous to live golden shiners in aspect ratio, size, shape, and locomotion pattern. However, one was painted with the natural colors of the golden shiner, the other with a palette not seen in the species.

The researchers affixed each robot to the inside of a water tunnel, introduced a live golden shiner fish, and observed its interactions with the robot. While the robot's position remained static, the researchers experimented with several different tail-beat frequencies.

"When the fish encountered a robot that mimicked both the coloration and mean tail-beat frequency for the species, it was likeliest to spend the most time in the nearest proximity to it," Porfiri said.

"The more closely the robot came to approximating a fellow golden shiner, the likelier the fish was to treat it like one, including swimming at the same depth behind the robot, which yields a hydrodynamic advantage," he explained.

While flow cues created by tail-beat frequency proved to be a critical trigger for shoaling behavior, coloration proved slightly dominant. "Even at tail-beat frequencies that were less than optimal for the live fish, the shiners were always more drawn to the naturally colored robot," Porfiri added.

Robot speed and body movement were the main focus of another study, also published in PLOS ONE, in which Porfiri teamed with NYU-Poly postdoctoral fellow Sachit Butail and graduate student Tiziana Bartolini. This time, the subject was the zebrafish, and the robot was a free-swimming unit with the coloration, size, aspect ratio, and fin shape of a fertile female member of the species.

The researchers placed the robot in a shared tank with shoals of live zebrafish, aiming to determine if the fish would perceive the robot as a predator, and whether visual cues from the robot could be used to modulate the fishes' social behavior and activity.

The team used a remote control to drive the robot in a circular swimming pattern, while varying its tail-beat frequency. For comparison purposes, they also exposed the fish to the robot in a fixed position, beating its tail.

Experiments showed that while the zebrafish clearly did not perceive the swimming robot as one of their own-they maintained greater distance from the robot than they did to each other-the robot was still an effective stimulus for modulating their social behavior.

When the robot was held still in the tank, the live fish showed high group cohesion, along with a strong polarization-meaning the fish were likely to be close to each other and oriented in the same direction.

As the robot's tail-beat frequency increased, it had a profound impact on the group's collective behavior, causing a spike in the cohesion and a small but detectable decrease in polarization-the fish largely milled together and even matched their speeds to that of the robot as it reached a certain tail-beat frequency.

"This shows us that the fish are responding to more than one stimulus-it's not just the flow cues, it's the combination of visual and flow cues that influence the collective response," Porfiri said.

Porfiri is a leading researcher in the field of ethorobotics-the study of robot-animal interaction. Studies like these advance multiple areas of science, including the development of an experimental animal model based on lower-order species such as fish, with robots providing a consistent, infinitely reproducible stimulus.

The use of robots to influence collective animal behavior is also viewed as a potential means to protect marine wildlife, including birds and fish, in the wake of environmental hazard.

.


Related Links
Polytechnic Institute of New York University
All about the robots on Earth and beyond!






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








ROBO SPACE
Gimball: A crash-happy flying robot
Lausanne, Switzerland (SPX) Nov 09, 2013
Gimball bumps into and ricochets off of obstacles, rather than avoiding them. This 34 centimeter in diameter spherical flying robot buzzes around the most unpredictable, chaotic environments, without the need for fragile detection sensors. This resiliency to injury, inspired by insects, is what sets it apart from other flying robots. Gimball is protected by a spherical, elastic cage which enable ... read more


ROBO SPACE
Plasmonic crystal alters to match light-frequency source

Virtually numbed: Immersive video gaming alters real-life experience

New material for quantum computing discovered out of the blue

Google boss says US data spying is "outrageous"

ROBO SPACE
Northrop Grumman Receives Contract to Retrofit Joint STARS Fleet

Latest AEHF Comms Payload Gets Boost From Customized Integrated Circuits

Northrop Grumman Cobham Intercoms Receives First Order For AN VIC-5 Enhanced Vehicular Comms

Raytheon produces new US Army satellite communications terminals ahead of schedule

ROBO SPACE
Kazakhstan say Baikonur launch site may be open to Western countries

ESA Swarm launch postponed

Europe's fifth ATV for launch by Arianespace begins its pre-flight checkout at the Spaceport

ILS Proton Launches Sirius FM-6 Satellite

ROBO SPACE
A Better Way to Track Your Every Move

China's satellite navigation system to start oversea operation next year

Russia, US to protect satellite navigation systems at UN level

Russia Retires Faulty Glonass-M Satellite

ROBO SPACE
Seoul eyes export market for its Surion light helicopter

Declassified: USAF tested secretly acquired Soviet fighters in Area 51

El Salvador to buy used attack planes from Chile

New Climate-studying Imager Makes First Balloon Flight

ROBO SPACE
Nanoscale engineering boosts performance of quantum dot light emitting diodes

JQI team 'gets the edge' on photon transport in silicon

Atomically Thin Device Promises New Class of Electronics

Tiny Sensors Put the Squeeze on Light

ROBO SPACE
Watching Earth's Winds, On a Shoestring

Astrium delivers microwave radiometer for the Sentinel-3A satellite

Time is ripe for fire detection satellite

Canadian Satellite SCISAT Celebrating 10 Years Of Scientific Measurements

ROBO SPACE
China climate negotiator laments 'severe' pollution

Gold mining ravages Peru

UCSB researcher documents the enduring contaminant legacy of the California gold rush

New low-cost, nondestructive technology cuts risk from mercury hot spots




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement