Subscribe free to our newsletters via your
. Space Industry and Business News .




SOLAR SCIENCE
The Science of Magnetic Reconnection
by Staff Writers
Greenbelt MD (SPX) Dec 11, 2014


In March 2015, NASA will launch the Magnetospheric Multiscale mission, or MMS, to learn more about a mysterious process that drives giant explosions in space via a process called magnetic reconnection. Image courtesy NASA's Goddard Space Flight Center/Duberstein. Watch a video on the research here.

Understanding vast systems in space requires understanding what's happening on widely different scales. Giant events can turn out to have tiny drivers - take, for example, what rocked near-Earth space in October 2003. On Oct. 28, 2003, and again on Oct. 29, massive solar flares erupted on the sun, sending X-rays zooming through the solar system.

Along with the flares, the sun expelled giant clouds of solar material, called coronal mass ejections, or CMEs. The CMEs slammed into Earth's magnetic field pushed material and energy in toward Earth. This created what's called a geomagnetic storm.

The Halloween Storms, as they have come to be called, triggered brilliant aurora that could be seen over much of North America - reaching as far south as Texas. But they also interfered with GPS signals and radio communications, and caused the Federal Aviation Administration to issue their first ever warning to airlines to avoid excess radiation by flying at low altitudes.

Every step leading to these intense storms - the flare, the CME, the transfer of energy from the CME to Earth's magnetosphere - was ultimately driven by the catalyst of magnetic reconnection.

This little understood process can occur in thin layers just miles thick. Yet it can accelerate particles up to nearly the speed of light and can initiate giant eruptions from the sun many times the size of Earth. The effects of reconnection have been observed in space, but the actual reconnection process has only been observed in the laboratory.

In March 2015, NASA will launch a new mission to study magnetic reconnection. The Magnetospheric Multiscale, or MMS, mission will be the first ever mission dedicated to studying this universal process by orbiting Earth to pass directly through nearby magnetic reconnection regions and to observe the minute details of such events.

Reconnection occurs wherever charged gases, called plasma, are present. It's rare on Earth, but plasma makes up 99% of the visible universe. Plasma fuels stars and fills the near vacuum of space.

Plasmas behave unlike what we regularly experience on Earth because they travel with their own set of magnetic fields entrapped in the material. Changing magnetic fields affect the way charged particles move and vice versa, so the net effect is a complex, constantly-adjusting system that is sensitive to minute variations.

Under normal conditions, the magnetic field lines inside plasmas don't break or merge with other field lines. But sometimes, as field lines get close to each other, the entire pattern changes and everything realign into a new configuration. The amount of energy released can be formidable. Magnetic reconnection taps into the stored energy of the magnetic field, converting it into heat and kinetic energy that sends particles streaming out along the field lines.

Scientists want to know exactly what conditions, what tipping points, trigger magnetic reconnection events. Much of what we currently know about the small-scale physics of magnetic reconnection comes from theoretical studies, computer models, and laboratory experiments.

True understanding, however, requires observing magnetic reconnection up close - so MMS will take its measurements in Earth's own magnetosphere, an ideal natural laboratory in which reconnection can be observed under a wide range of conditions.

Orbiting Earth, MMS will pass through known areas of magnetic reconnection. During its first phase it will travel through reconnection sites on the sun side of Earth.

Here the interplanetary magnetic field connects with Earth's magnetic field, transferring particles, momentum and energy to the magnetosphere via magnetic reconnection. During the second phase of its mission, MMS will observe reconnection on the night side of Earth, where that connected field flows around both sides of Earth to a second reconnection point in what's known as the magnetotail, where they then disconnect.

These reconnection sites are so thin, that MMS will fly through them in under a second - but the MMS sensors have been built to be fast, operating at unprecedented speed. As the spacecraft fly through such a site, they will measure the magnetic and electric fields present as well as the movement of particles.

Armed with this data, scientists will have their first chance to watch magnetic reconnection from the inside, right as it's occurring. By focusing on the small-scale process, scientists open the door to understanding what happens on larger scales throughout the universe.

Determining how reconnection occurs nearby will improve our understanding of how this fundamental process works on the sun, on other stars, throughout space - and, of course, it will teach us more about giant geomagnetic storms like the Halloween storms, thus helping us safeguard our home planet Earth.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Magnetospheric Multiscale(MMS) mission
Solar Science News at SpaceDaily






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








SOLAR SCIENCE
NASA-funded FOXSI to Observe X-Rays From Sun
Greenbelt MD (SPX) Dec 09, 2014
An enormous spectrum of light streams from the sun. We're most familiar with the conventional visible white light we see with our eyes from Earth, but that's just a fraction of what our closest star emits. NASA regularly watches the sun in numerous wavelengths because different wavelengths provide information about different temperatures and processes in space. Looking at all the wavelengt ... read more


SOLAR SCIENCE
Airbus Defence and Space signs contract for Microwave Sounder instruments

Researchers develop clothes that can monitor and transmit biomedical info on wearers

China developing space-based 3D printing machine

BAE Systems to produce prototype counter-radar system

SOLAR SCIENCE
SES Demonstrates O3b Satellite Technology for US Govt Customers

LockMart completes environmental testing on 4th MUOS bird

Harris Corporation supplying Falcon III radios to Canadian military

GenDyn Canada contracted to connect military to WGS system

SOLAR SCIENCE
NASA, SpaceX reschedule next week's ISS resupply launch

Final payload integration begins for O3b Networks' four satellites

ULA signs Orbital Sciences to launch Cygnus cargo mission to ISS

XCOR Presents New Platforms For Suborbital Science at AGU

SOLAR SCIENCE
GPS analysts bridge gap between launch, orbit

China to Roll Out Own Global Navigation System by 2020

NIST study 'makes the case' for RFID forensic evidence management

Galileo satellite recovered and transmitting navigation signals

SOLAR SCIENCE
New Patent For Aeroscraft Air Bearing Landing System

Britain, France contract Airbus DS for A400M maintenance support

No edge for F-35 on most missions: report

Bell demos V-22 Osprey with forward-firing weapons

SOLAR SCIENCE
Unusual electronic state found in new class of unconventional superconductors

Computers that teach by example

High photosensitivity 2-D-few-layered molybdenum diselenide phototransistors

US tech firm Intel plans $1.6 bn investment in China

SOLAR SCIENCE
SSC supports the DEIMOS-2 satellite from launch through commercial service

ADS to build Falcon Eye Earth-observation system for UAE

China launches another remote sensing satellite

NASA's CATS: A Launch of Exceptional Teamwork

SOLAR SCIENCE
EU clean air, waste laws at risk

Lower IQ seen after exposure to plastic chemicals

Asbestos: An ongoing challenge to global health

French ecology minister slams 'ridiculous' log fire ban




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.