Space Industry and Business News
TECH SPACE
The Rise of the Virtual Mission
File illustration of a Loft Orbital microsatellite.
The Rise of the Virtual Mission
by Bethany Pulcini-Baldwin, Virtual Missions Product Lead
Los Angeles CA (SPX) Dec 05, 2023

For decades, satellites have been a valuable resource for understanding events on Earth in slow motion, from assessing damage from extreme weather, to forecasting crop outputs, to predicting economic activity from the number of ships docked in a port.

At Loft, we believe that satellites can do more. Satellites should be able to provide answers and insights - not just raw data - in real time. Realizing this future requires us to shorten the time it takes to derive value from satellite data. Specifically, it means having the ability to parse, process, and analyze raw data onboard the satellite, at the moment of collection.

This requires that we think of satellites as more than just data collection platforms. They also need to be edge compute nodes, where software applications (apps) can run as easily as they do in a data center.

Over the past two years, Loft has quietly built the product stack that enables any developer to deploy software apps to Loft satellites, or what we call virtual missions. Today, we're excited to announce YAM-6, the first virtual mission-enabled satellite. Launching on Transporter-10, YAM-6 will abstract away the hardware by providing access to Loft-owned sensors and compute nodes that support AI. This is a revolutionary shift in the space industry: you don't have to own a satellite, or even a payload, to operate in space.

What is a virtual mission?
We define a virtual mission as the deployment of a customer-developed software app onto Loft's space infrastructure to leverage onboard resources such as imagers and compute. YAM-6's payloads include a hyperspectral imager, an RGB imager, a software-defined radio, and real-time connectivity via an inter-satellite link. They're paired with a powerful robust set of CPU and GPU compute options and are AI-ready, with GPU acceleration for heavier AI workloads, such as image processing or change detection.

While many space companies are constrained to the traditional process of designing, building, integrating, testing, launching, and operating a satellite, Loft manages this challenging, capital-intensive process so the customer can directly access the data they need. Just as a developer can deploy their software to a cloud server, we're providing the tools for customers to do the same with our satellites. In fact, we've already seen success with Agenium Space, a customer building AI algorithms that process imagery on-orbit to detect and identify ships.

How do virtual missions work?
Virtual missions represent Loft's mission to make space simple in every sense. By providing an SDK (Software Development Kit) and environment for testing, we create a CI/CD (Continuous Integration/Continuous Deployment) pipeline for space. This is all supported by our culture of SatDevOps. Here's how virtual missions work:

Loft provides our customer with the SDK, which includes a clearly defined framework, documentation, and APIs.

Our customer develops their software app according to their business objectives.

The software app is deployed in the development environment to test and identify bugs to mitigate risk, before deployment into a production environment (AKA the satellite).

Then the software app is deployed to our infrastructure in space using Cockpit, our mission-agnostic operations software. By abstracting away hardware interactions, we can provide rapid access and a simple interface for any application.

Our partner, Microsoft, provides the cloud development environment and on-orbit application framework that makes this possible on YAM-6. Any developer using Microsoft's Azure Orbital space edge can easily deploy software apps to a Loft satellite with our Loft-specific satellite APIs that give access to our onboard sensors and compute platforms.

Why do we need virtual missions?
Virtual missions provide the opportunity to radically shorten time to orbit. Customers can deploy their own software apps to our infrastructure to analyze data as it is being collected, enabling all kinds of use cases like tip-and-cue, response and sensor fusion. Software apps that require compute power, like AI and Machine Learning, enable us to use the unique vantage point of space in a variety of important ways.

YAM-6 will deploy a number of virtual missions from customers, right after launch. One of the most exciting parts of this industry shift is that we don't know exactly what our customers will come up with. We're just at the beginning of an ecosystem of developers and applications that run on Loft's space infrastructure, and we can't wait to see what's next.

Got an idea for a space application? We want to hear from you! Send us a note at [email protected].

Related Links
Loft Orbital
Space Technology News - Applications and Research

Subscribe Free To Our Daily Newsletters
Tweet

RELATED CONTENT
The following news reports may link to other Space Media Network websites.
TECH SPACE
Rice researcher scans tropical forest with mixed-reality device
Houston TX (SPX) Nov 16, 2023
Rice University scientists used a commercially available mixed-reality headset with custom-designed software to measure and analyze forest floor vegetation, demonstrating a correlation between animal diversity and the mapped habitat of a Tanzanian national park. According to the paper published in the journal Ecology, the greater the microhabitat surface area, the richer the biodiversity of its mammals. Traditional habitat field research requires a significant amount of time and effort, but Rice p ... read more

TECH SPACE
Transforming Waste into Strength: The Graphene Revolution in Concrete Recycling

The Rise of the Virtual Mission

Unlocking the secrets of natural materials

MIT engineers develop a way to determine how the surfaces of materials behave

TECH SPACE
HawkEye 360's Pathfinder constellation complete five years of Advanced RF Detection

New antenna offers unprecedented flexibility for military applications

WVU Team Tackles Radio Interference in Astronomy with NSF Funding

Quantum Space launches Sentry to pioneer deep space communications network

TECH SPACE
TECH SPACE
Airbus presents first flight model structure for Galileo Second Generation

Galileo Gen2 satellite production commences at Airbus facility

Galileo Second Generation satellite aces first hardware tests

PASSport project testing

TECH SPACE
NASA and Moog advance quiet flight technology in air taxi noise tests

Chinese balloon detected around Taiwan: defence ministry

Air New Zealand aims to fly battery-powered plane by 2026

All aboard US Osprey that crashed off Japan assumed dead

TECH SPACE
World's first logical quantum processor

Self-Assembled Bowtie Resonators Achieve Atomic-Scale Miniaturization

Photonic chip that 'fits together like Lego' opens door to semiconductor industry

Chloride ions kill the stability of blue perovskite light emitting diodes

TECH SPACE
AI-Powered Satellite Analysis Unveils Economic Realities in Underdeveloped Nations

Eutelsat OneWeb partners with Imperial College London for space weather monitoring

COP28: UK climate satellite contracts

Groundbreaking satellite study reveals local temperature impacts of land cover modifications

TECH SPACE
UK anti-terror police probe London vehicle pollution camera 'bombing'

'Stay home': Pollution chokes Iran's capital

Toxic air divides Delhi between poverty and privilege

COP28 host UAE choking from its own 'toxic' air pollution: HRW

Subscribe Free To Our Daily Newsletters




The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.