Space Industry and Business News  
SPACEMART
The Internet of Things by satellite will become increasingly accessible
by Staff Writers
Barcelona, Spain (SPX) Dec 27, 2019

stock illustration only

Since some years ago, the Internet of Things (IoT) has been a constantly evolving reality. The possibility that machines (nodes) can communicate with each other has paved the way for applications that promise to have a profound impact on our lives. They include smart farming, home automation and communication between vehicles.

One of the key elements of the IoT is wireless communication between machines, known as Machine-to-Machine (M2M) Communication. Unlike mobile networks such as 4G, or WiFi networks, a significant proportion of M2M communications is characterized by very low transmission speeds, very small data packets and a huge number of devices. These features represent a major challenge in terms of coordinating telecommunications networks.

Recent research presents efficient, low complexity algorithms so that the Internet of Things via satellite is increasingly accessible, thanks to the implementation of advanced random access schemes by satellite. The research is developed in a study published in International Journal of Satellite Communications and Networking, of which one of its authors is Giuseppe Cocco, a researcher at the Department of Information and Communication Technologies (DTIC) and at the German Aerospace Center (DLR), along with researchers from the European Space Agency.

The number of sensors connected to the same satellite can be extremely high
Let us suppose that a crop has a moisture sensor connected to a satellite that transmits information only when the humidity falls below a certain threshold. The sensor might not send any information for a long time and when it does decide to do so, the amount of data is very small (just a few bits).

In this case, the volume of control data needed to establish a connection with the satellite network may exceed the amount of useful data (payload) transmitted by the sensor.

Although this may not seem like a problem if dealing with a single sensor, in the case of satellite networks the number of sensors connected to a single satellite can be extremely high. Even though each sensor transmits a small amount of data very occasionally, the total volume of traffic can be very large.

In addition, removing or reducing control information in M2M traffic could lead to signals from different sensors interfering with each other, which could cause a loss of sent information and, in the event of heavy traffic, even to a network collapse.

In this context it is understood how M2M traffic control information is a significant but necessary waste of resources to avoid interference, which can lead to the need to use a broader bandwidth, bigger and more expensive satellites or more of them, a higher cost of M2M communication and a negative impact on the development of the IoT.

To solve this problem, in recent years new advanced systems of multiple random access have been developed that allow greatly limiting control information without affecting the performance of the network.

These systems work so counterintuitively, that is, instead of trying to avoid interference, they increase it, leaving each node to transmit multiple copies of the same message without knowing if anyone else is transmitting at the same time.

"The trick is in how the receiver exploits this interference to clean the received signal, extracting useful information from it", explains Cocco. "To get an idea of how these systems work, you can think about how you eat an artichoke: every time you remove a leaf you eat the good bit of it, but the leaves that are below are also released, so there is at least one new leaf that can be removed every time", adds the co-author of the article.

Several articles in international scientific journals have confirmed that random multiple access based on the transmission of multiple copies of each message is very promising. However, these studies use simplifications (needed to work more simply with equations and simulations) that do not allow assessing the performance of these systems in a real environment, the authors of the study explain.

"Our contribution goes beyond these simplifications. We have studied the impact on the entire system of various elements present in real systems (such as imperfections in low cost electronics that are typical of many IoT nodes) and have developed algorithms that help strengthen the system against them.

"Thus, we have made a particular effort to develop algorithms that are at the same time efficient and of low complexity, so that IoT via satellite is increasingly efficient and accessible for everyone", concludes Cocco.

Research paper


Related Links
Universitat Pompeu Fabra - Barcelona
The latest information about the Commercial Satellite Industry


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


SPACEMART
First launch of UK's OneWeb satellites from Baikonur now set for 30 Jan
Moscow (Sputnik) Dec 08, 2019
The first launch of UK telecommunications satellites OneWeb from Baikonur Cosmodrome is scheduled for 30 January, a spokesman for Glavkosmos, subsidiary of Russian space agency Roscosmos, said. In late November, a source at the spaceport revealed that the launch of OneWeb satellites had been postponed from 23 January to later January or February due to delays in the production of satellites. Before that, the launch was planned for 19 December and was postponed for a similar reason. "Work on ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

SPACEMART
Northrop Grumman lands $1B contract for F-16 AESA radars

Finding a killer electron hot spot in Earth's Van Allen radiation belts

Solving the challenges of long duration space flight with 3D Printing

Calling radio amateurs: help find OPS-SAT!

SPACEMART
General Dynamics receives $730M for next-gen satcom system

Airbus' marks 50 years in Skynet secure satellite communications for UK

Lockheed Martin gets $3.3B contract for communications satellite work

GenDyn nets $783M for next-gen Navy MUOS operations

SPACEMART
SPACEMART
US Congress green lights India's NavIC as regional satellite navigation system

Russia postpones Glonass-M launch From Plesetsk over carrier problems

China launches two more BeiDou satellites for GPS system

Russia to launch glass sphere into space before new year to obtain accurate Earth data

SPACEMART
Hill Air Force Base receives last of 78 F-35A Lightning II aircraft

Battle around Swiss fighter jet purchase plans heats up

USAFSAM operates only device for potential pilot height waiver

KC-46A Pegasus tanker completes first flight around the world

SPACEMART
Japan lifts curbs on export of key chip material to S. Korea

Scientists see defects in potential new semiconductor

Transistors can now both process and store information

A platform for stable quantum computing, a playground for exotic physics

SPACEMART
Scientists find iron 'snow' in Earth's core

NASA Awards Launch Services Contract for Environmental Satellite Mission

NASA eBook reveals insights of Earth seen at night from space

China releases first 3D images based on Earth observation satellite

SPACEMART
Cities are expanding outward, not upward -- an unsustainable pattern

India leads world in pollution linked deaths: study

Spain river littered with dead fish after waste plant fire

Household dust hosts toxic chemicals from LCD screens









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.