Space Industry and Business News  
SOLAR DAILY
Tethered chem combos could revolutionize artificial photosynthesis
by Staff Writers
Upton NY (SPX) Nov 05, 2019

Brookhaven Lab chemist Javier Concepcion and Lei Wang, a graduate student at Stony Brook University, devised a scheme for assembling light-absorbing molecules and water-splitting catalysts on a nanoparticle-coated electrode. The result: production of hydrogen gas fuel via artificial photosynthesis and a platform for testing different combos to further improve efficiency.

Scientists at the U.S. Department of Energy's Brookhaven National Laboratory have doubled the efficiency of a chemical combo that captures light and splits water molecules so the building blocks can be used to produce hydrogen fuel. Their study, selected as an American Chemical Society "Editors' Choice" that will be featured on the cover* of the Journal of Physical Chemistry C, provides a platform for developing revolutionary improvements in so-called artificial photosynthesis - a lab-based mimic of the natural process aimed at generating clean energy from sunlight.

In natural photosynthesis, green plants use sunlight to transform water (H2O) and carbon dioxide (CO2) into carbohydrates such as sugar and starches. The energy from the sunlight is stored in the chemical bonds holding those molecules together.

Many artificial photosynthesis strategies start by looking for ways to use light to split water into its constituents, hydrogen and oxygen, so the hydrogen can later be combined with other elements - ideally the carbon from carbon dioxide - to make fuels. But even getting the hydrogen atoms to recombine as pure hydrogen gas (H2) is a step toward solar-powered clean-fuel generation.

To achieve water splitting, scientists have been exploring a wide range of light-absorbing molecules (also called chromophores, or dyes) paired with chemical catalysts that can pry apart water's very strong hydrogen-oxygen bonds.

The new approach uses molecular "tethers" - simple carbon chains that have a high affinity for one another - to attach the chromophore to the catalyst. The tethers hold the particles close enough together to transfer electrons from the catalyst to the chromophore an essential step for activating the catalyst - but keeps them far enough apart that the electrons don't jump back to the catalyst.

"Electrons move fast, but chemical reactions are much slower. So, to give the system time for the water-splitting reaction to take place without the electrons moving back to the catalyst, you have to separate those charges," explained Brookhaven Lab chemist Javier Concepcion, who led the project.

In the complete setup, the chromophores (tethered to the catalyst) are embedded in a layer of nanoparticles on an electrode. Each nanoparticle is made of a core of tin dioxide (SnO2) surrounded by a titanium dioxide (TiO2) shell. These different components provide efficient, stepwise shuttling of electrons to keep pulling the negatively charged particles away from the catalyst and sending them to where they are needed to make fuel.

Here's how it works from start to finish: Light strikes the chromophore and gives an electron enough of a jolt to send it from the chromophore to the surface of the nanoparticle. From there the electron moves to the nanoparticle core, and then out of the electrode through a wire. Meanwhile, the chromophore, having lost one electron, pulls an electron from the catalyst. As long as there's light, this process repeats, sending electrons flowing from catalyst to chromophore to nanoparticle to wire.

Each time the catalyst loses four electrons, it becomes activated with a big enough positive charge to steal four electrons from two water molecules. That breaks the hydrogen and oxygen apart. The oxygen bubbles out as a gas (in natural photosynthesis, this is how plants make the oxygen we breathe!) while the hydrogen atoms (now ions because they are positively charged) diffuse through a membrane to another electrode. There they recombine with the electrons carried by the wire to produce hydrogen gas - fuel!

Building on experience
The Brookhaven team had tried an earlier version of this chromophore-catalyst setup where the light-absorbing dye and catalyst particles were connected much more closely with direct chemical bonds instead of tethers.

"This was very difficult to do, taking many steps of synthesis and purification, and it took several months to make the molecules," Concepcion said. "And the performance was not that good in the end."

In contrast, attaching the carbon-chain tethers to both molecules allows them to self-assemble.

"You just dip the electrode coated with the chromophores into a solution in which the catalyst is suspended and the tethers on the two types of molecules find one another and link up," said Stony Brook University graduate student Lei Wang, a coauthor on the current paper and lead author on a paper published earlier this year that described the self-assembly strategy.

The new paper includes data showing that the system with tethered connections is considerably more stable than the directly connected components, and it generated twice the amount of current - the number of electrons flowing through the system.

"The more electrons you generate from the light coming in, the more you have available to generate hydrogen fuel," Concepcion said.

The scientists also measured the amount of oxygen produced.

"We found that this system, using visible light, is capable of reaching remarkable efficiencies for light-driven water splitting," Concepcion said.

But there's still room for improvement, he noted. "What we've done to this point works to make hydrogen. But we would like to move to making higher value hydrocarbon fuels." Now that they have a system where they can easily interchange components and experiment with other variables, they are set to explore the possibilities.

"One of the most important aspects of this setup is not just the performance, but the ease of assembly," Concepcion said.

"Because these combinations of chromophores and catalysts are so easy to make, and the tethers give us so much control over the distance between them, now we can study, for example, what is the optimal distance. And we can do experiments combining different chromophores and catalysts without having to do much complex synthesis to find the best combinations," he said. "The versatility of this approach will allow us to do fundamental studies that would not have been possible without this system."

Research Report: "A Self-Assembled Chromophore/Catalyst Bilayer for Water Oxidation in a Dye-Sensitized Photoelectrosynthesis Cell"


Related Links
Brookhaven National Laboratory
All About Solar Energy at SolarDaily.com


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


SOLAR DAILY
Using renewable electricity for industrial hydrogenation reactions
Pittsburgh PA (SPX) Oct 30, 2019
From the design of improved batteries to the use of solar and wind power for commodity chemical production, the University of Pittsburgh's James McKone ways that chemical engineering can make the world more sustainable. That's why his most recent work, investigating ways that the chemical industry can use renewable electricity as its energy source, is featured in the Journal of Materials Chemistry A Emerging Investigators special issue. The themed issue highlights the rising stars of materials che ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

SOLAR DAILY
New material expands by a factor of 100 when electrocuted

Drexel researchers develop coal ash aggregate that helps concrete cure

Las Cumbres helping to develope a Cyberinfrastructure Institute for Astronomical Data

What About Space Traffic Management?

SOLAR DAILY
GatorWings wins DARPA Spectrum Collaboration Challenge

EPS completes multiservice operational test, declared fully operational

China launches new communication technology experiment satellite

2nd Space Operations Squadron decommissions 22-year-old satellite

SOLAR DAILY
SOLAR DAILY
GPS III Ground System Operations Contingency Program Nearing Operational Acceptance

UK should ditch plans for GPS to tival Galileo

ISRO works with Qualcomm to develop improved geo-location chipset

Satelles, Inc. Secures $26 Million in Series C Funding Round Led by C5 Capital

SOLAR DAILY
Pentagon, Lockheed reach $34B deal for 478 F-35s as price per aircraft drops

Japan approved for $4.5B upgrade package for its F-15Js

Rome's Fiumicino airport expansion rejected for environmental reasons

Lockheed to test F-35B durability under $148.4M contract

SOLAR DAILY
Scientists tame Josephson vortices

Blanket of light may give better quantum computers

Radiation detector with the lowest noise in the world boosts quantum work

Study reveals how age affects perception of white LED light

SOLAR DAILY
DLR DESIS spectrometer begins routine operations on the ISS

Ozone hole in 2019 is the smallest on record since its discovery

Tiny particles lead to brighter clouds in the tropics

Joint Polar Satellite System's Microwave Instrument Fully Assembled

SOLAR DAILY
Big firm products top worst plastic litter list: report

India's firecracker hub hit by anti-pollution drive

Papua New Guinea shutters polluting Chinese plant

Boom or bust: Hanoi pollution crises expose growth risks









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.