Space Industry and Business News  
TIME AND SPACE
Teleporting toward a quantum Internet
by Staff Writers
Pasadena CA (JPL) Oct 14, 2016


This image shows crystals used for storing entangled photons, which behave as though they are part of the same whole. Scientists use crystals like these in quantum teleportation experiments. Image courtesy Felix Bussieres/University of Geneva. For a larger version of this image please go here.

Quantum physics is a field that appears to give scientists superpowers. Those who understand the world of extremely small or cold particles can perform amazing feats with them - including teleportation - that appear to bend reality.

The science behind these feats is complicated, and until recently, didn't exist outside of lab settings. But that's changing: researchers have begun to implement quantum teleportation in real-world contexts. Being able to do so just might revolutionize modern phone and Internet communications, leading to highly secure, encrypted messaging.

A paper published in Nature Photonics and co-authored by engineers at NASA's Jet Propulsion Laboratory, Pasadena, California, details the first experiments with quantum teleportation in a metropolitan fiber cable network. For the first time, the phenomenon has been witnessed over long distances in actual city infrastructure. In Canada, University of Calgary researchers teleported the quantum state of a photon more than 3.7 miles (6 kilometers) in "dark" (unused) cables under the city of Calgary. That's a new record for the longest distance of quantum teleportation in an actual metropolitan network.

While longer distances had been recorded in the past, those were conducted in lab settings, where photons were fired through spools of cable to simulate the loss of signal caused by long distances. This latest series of experiments in Calgary tested quantum teleportation in actual infrastructure, representing a major step forward for the technology.

"Demonstrating quantum effects such as teleportation outside of a lab environment involves a whole new set of challenges. This experiment shows how these challenges can all be overcome and hence it marks an important milestone towards the future quantum Internet," said Francesco Marsili, one of the JPL co-authors. "Quantum communication unlocks some of the unique properties of quantum mechanics to, for example, exchange information with ultimate security or link together quantum computers."

Photon sensors for the experiment were developed by Marsili and Matt Shaw of JPL's Microdevices Laboratory, along with colleagues at the National Institute of Standards and Technology, Boulder, Colorado. Their expertise was critical to the experiments: quantum networking is done with photons, and requires some of the most sensitive sensors in the world in order to know exactly what's happening to the particle.

"The superconducting detector platform, which has been pioneered by JPL and NIST researchers, makes it possible to detect single photons at telecommunications wavelengths with nearly perfect efficiency and almost no noise. This was simply not possible with earlier detector types, and so experiments such as ours, using existing fiber-infrastructure, would have been close to impossible without JPL's detectors," said Daniel Oblak of the University of Calgary's Institute for Quantum Science and Technology.

Safer emails using quantum physics
Shrink down to the level of a photon, and physics starts to play by bizarre rules. Scientists who understand those rules can "entangle" two particles so that their properties are linked. Entanglement is a mind-boggling concept in which particles with different characteristics, or states, can be bound together across space. That means whatever affects one particle's state will affect the other, even if they're located miles apart from one another.

This is where teleportation comes in. Imagine you have two entangled particles - let's call them Photon 1 and Photon 2 - and Photon 2 is sent to a distant location. There, it meets with Photon 3, and the two interact with each other. Photon 3's state can be transferred to Photon 2, and automatically "teleported" to the entangled twin, Photon 1. This disembodied transfer happens despite the fact that Photons 1 and 3 never interact.

This property can be used to securely exchange secret messages. If two people share an entangled pair of photons, quantum information can be transmitted in a disembodied fashion, leaving an eavesdropper with nothing to intercept and so unable to read the secret message.

Teleportation Means Going the Distance
This system of highly secure communications is being tested in a number of fields, Marsili said, including financial industries and agencies like NASA that want to protect their space data signals. The superconducting single photon detectors developed by Marsili, Shaw and their NIST colleagues are a key tool in doing this, because sending photons over long distances will inevitably lead to "loss" of the signal. Even when using a laser in space, light diffuses over distance, weakening the power of the signal being transmitted.

The next step is building repeaters that can further teleport the state of a photon from one location to the next. Just as repeaters are used to carry other telecommunication signals across long distances, they could be used to teleport entangled photons. Super-sensitive photon detectors would allow repeaters to send entangled photons across the country. For space-related communications, repeaters wouldn't even be necessary; photons could eventually be fired into space using lasers, and photon states could be teleported from Earth.

No repeaters were used in the Calgary experiments, which were mainly meant to establish how quantum teleportation can be performed outside the lab. Researchers used the city's dark fiber - a single optical cable with no electronics or network equipment flowing through them.

"By using advanced superconducting detectors, we can use individual photons to efficiently communicate both classical and quantum information from space to the ground," Shaw said. "We are planning to use more advanced versions of these detectors for demonstrations of optical communication from deep space and of quantum teleportation from the International Space Station."

The study was funded by Alberta Innovates Technology Futures; the National Science and Engineering Research Council of Canada; and the Defense Advanced Research Projects Agency. Part of the detector research was carried out at JPL under a contract with NASA. Caltech in Pasadena manages JPL for NASA.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Quantum teleportation at JPL
Understanding Time and Space






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
TIME AND SPACE
Lights, action, electrons!
Onna, Japan (SPX) Oct 14, 2016
Ever since J.J. Thompson's 1897 discovery of the electron, scientists have attempted to describe the subatomic particle's motion using a variety of different means. Electrons are far too small and fast to be seen, even with the help of a light microscope. This has made measuring an electron's movement very difficult for the past century. However, new research from the Femtosecond Spectroscopy Un ... read more


TIME AND SPACE
Mars astronauts face chronic dementia risk from cosmic ray exposure

Efficiency plus versatility

U.S. State Dept. approves $194 million radar sale to Kuwait

Achieving ultra-low friction without oil additives

TIME AND SPACE
Arizona aerospace company wins $19M Navy satellite contract

Canada defence dept selects Newtec for first DVB-S2X Airborne Modem

TeleCommunications Systems continues USMC satellite services

SES unveils new tactical surveillance and communications solution

TIME AND SPACE
Swedish Space Corporation Celebrates 50th Anniversary of Esrange Space Center

More commercial spaceports going ahead

ILS Announces Two Missions under Its EUTELSAT Multi-Launch Agreement

US-Russia Standoff Leaves NASA Without Manned Launch Capabilities

TIME AND SPACE
Australia's coordinates out by more than 1.5 metres: scientist

US Air Force awards Lockheed Martin $395M Contract for two GPS 3 satellites

SMC exercises contract options to procure two additional GPS III satellites

Lockheed gets $395 million GPS III Space Vehicle contract modification

TIME AND SPACE
Boeing Australia tapped for P-8A sustainment services

Poland opens 'talks' on new military choppers after Airbus row

Peru receives Russian radios as part of helicopter deal

Terma, BAE continue noise-reduction effort for pilot helmets

TIME AND SPACE
Sandia, Harvard team create first quantum computer bridge

Infrared brings to light nanoscale molecular arrangement

Researchers develop DNA-based single-electron electronic devices

Researchers use novel materials to build smallest transistor

TIME AND SPACE
The future of radar - scientific benefits and potential of TerraSAR-X and TanDEM-X

Airbus Defence and Space-built PeruSAT-1 delivers first images

Data improves hurricane forecasts, but uncertainties remain

NASA maps help gauge Italy earthquake damage

TIME AND SPACE
Scientists discover supramolecule could help reduce nuclear waste

Coffee-infused foam removes lead from contaminated water

Great Pacific Garbage Patch aerial survey yields bad news

Washing clothes releases 1000s of microplastic particles into environment









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.