Space Industry and Business News  
SOLAR DAILY
Tandem solar cells are simply better
by Staff Writers
Zurich, Switzerland (SPX) Dec 01, 2015


The semi-transparent perovskite solar cell absorbs UV, blue and yellow visible light. It allows red light and infrared radiation to pass through. Based on this principle, a double-layer "tandem solar cell" can be built with an efficiency that is much higher than single-layer solar cells. Image courtesy Empa. For a larger version of this image please go here.

What is true for double-blade razors is also true for solar cells: two work steps are more thorough than one. Stacking two solar cells one on top of the other, where top cell is semi-transparent, which efficiently converts large energy photons into electricity, while the bottom cell converts the remaining or transmitted low energy photons in an optimum manner.

This allows a larger portion of the light energy to be converted to electricity. Up to now, the sophisticated technology needed for the procedure was mainly confined to the realm of Space or Concentrated Photovoltaics (CPV). These "tandem cells" grown on very expensive single crystal wafers are considered not attractive for mass production and low cost solar electricity.

The research team working under Stephan Buecheler and Ayodhya N. Tiwari from the Laboratory for Thin Films and Photovoltaics at Empa-Swiss Federal Laboratories for Material Science and Technology has now succeeded in making tandem solar cells that are based on polycrystalline thin films, and the methods are suitable for large area low cost processing, Flexible plastic or metal foils could also be used as substrate in future. This marks a major milestone on the path to mass production of high-efficiency solar cells with low cost processes.

The secret behind the new process is that the researchers create the top solar cell perovskite film with a low-temperature procedure at just 50 degrees Celsius. This promises an energy-saving and cost-saving production stage for future manufacturing processes. The tandem solar cell yielded an efficiency rate of 20.5% when converting light to electricity. Already with this first attempt Empa researchers have emphasized that it has lots more potential to offer for better conversion of solar spectrum into electricity.

Molecular soccer balls as a substrate for the magic crystal
The key to this double success was the development of a 14.2% efficient semi-transparent solar cell, with 72% average transparency, made from methylammonium lead iodide deposited in the form of tiny perovskite crystals. The perovskite is grown on a thin interlayer made of the substance abbreviated as PCBM (phenyl-C61-butyric acid methyl ester) is used .

Each PCBM molecule contains 61 carbon atoms interconnected in the shape of a soccer ball. The perovskite film is prepared by a combination of vapour deposition and spin coating onto this layer, which has tiny football like structure, followed by an annealing at a "lukewarm" temperature. This magic perovskite crystal absorbs blue and yellow spectrum of visible light and converts these into electricity. By contrast, red light and infrared radiation simply pass through the crystal. As a result, the researchers can attach a further solar cell underneath the semi-transparent perovskite cell in order to convert the remaining light into electricity.

Advantage of the double-layer cell: better use of the spectrum of sunlight
For the lower layer of the tandem solar cell, the Empa researchers use a CIGS cell (copper indium gallium diselenide), a technique that the team has been researching for years. Based on the CIGS cells, small-scale production is already under way for flexible solar cells (see Empa News from 11 June 2015). The advantage of tandem solar cells is that they exploit sunlight better.

A solar cell can only convert radiation with an energy level higher than the bandgap of the semiconductor used. If the radiation energy is lower, no electricity is generated. If the radiation is higher in energy, the excess radiated energy is converted to heat and is lost. A double-layer solar cell like Empa's perovskite CIGS cell can combine substances with differing bandgaps and thus efficiently convert a larger share of the incident solar energy to electricity.

More than 30% efficiency is possible
While very good single-layer polycrystalline solar cell may practically convert a maximum of 25% of the solar energy to electricity, tandem solar cells could increase this figure to beyond 30%. That's according to Ayodhya Tiwari, head of the Thin Film and Photovoltaics laboratory. He does say, however, that a lot of research work is needed before that will be possible.

"What we have achieved now is just the beginning. We will have to overcome many obstacles before reaching this ambitious goal. To do this, we will need lots of interdisciplinary experience and a large number of combinatorial experiments until we have found a semi-transparent high-performance cell together with the right base cell, and technologies for electrical interconnections of these solar cells."

Stephan Bucheler, who coordinates the lab research in Tiwari's team, reminds us that the race for efficiency in solar cell research is certainly not just an academic show.

"When producing solar-powered electricity, only half of the costs are down to the solar module itself. The other half are incurred for the infrastructure: inverters, cables, carriers for the cells, engineering costs and installation. These ancillary costs are reduced when the solar cells become more efficient and can be built in smaller sizes as a result. This means that efficient solar cells are the key to low-cost renewable electricity."


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Swiss Federal Laboratories for Materials Science and Technology (EMPA)
All About Solar Energy at SolarDaily.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
SOLAR DAILY
Australian-first safety guide and study show what's in store for our energy future
Melbourne, Australia (SPX) Nov 30, 2015
The Clean Energy Council is launching an Australian-first home energy storage safety guide in collaboration with CSIRO at an event in Sydney today, along with the most comprehensive national study of storage safety to date. Clean Energy Council Chief Executive Kane Thornton said while many people had been captivated by the future possibilities of solar and storage technology, very little i ... read more


SOLAR DAILY
Material universe yields surprising new particle

Inkjet hologram printing now possible

Chemical design made easier

Success in producing a completely rare-earth free Feni magnet

SOLAR DAILY
Australia contracts for defense computer network upgrades

Harris Corporation Wins $40 Million Air Force Satellite Control Network Contract Extension

Commercialization is coming to WGS

DARPA's RadioMap Program Enters Third Phase

SOLAR DAILY
Vega receives the LISA Pathfinder payload for its December 2 flight

NASA Orders SpaceX Crew Mission to International Space Station

NASA calls on SpaceX to send astronauts to ISS

NASA Selects New Technologies for Parabolic Flights and Suborbital Launches

SOLAR DAILY
Raytheon completes GPS III launch readiness exercise

LockMart advances threat protection on USAF GPS Control Segment

Orbital ATK products enable improved global positioning on Earth

Galileo pair preparing for December launch

SOLAR DAILY
Philippine Air Force receiving South Korean FA-50 jets

BAE Systems touts after-market products, services for F-15s

New runway barrier system blocks engine damage

NASA Studying Volcanic Ash Engine Test Results

SOLAR DAILY
Semiconductor wafers exhibit strange quantum phenomenon at room temps

Stacking instead of mixing cools down the chips

Flexoelectricity is more than Moore

Photons on a chip set new paths for secure communications

SOLAR DAILY
New satellite to measure plant health

NASA plans twin sounding rocket launches over Norway this winter

Sentinel-3A on its way

RippleNami helps visualize change in Africa with its customizable mapping platform

SOLAR DAILY
Beijing issues orange alert for heavy smog

Brazil to sue dam spill mining companies for $5.2 bn

On polluted Rio island, Brazilian ecologist dreams of miracle

Sludge from deadly Brazil mine accident reaches the Atlantic









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.