Space Industry and Business News  
CHIP TECH
Taking the Next Step in Quantum Information Processing
by Staff Writers
Washington DC (SPX) Mar 04, 2019

DARPA's Optimization with Noisy Intermediate-Scale Quantum devices (ONISQ) program will pursue a hybrid concept that combines intermediate-sized quantum devices with classical systems to solve challenging optimization problems.

Universal quantum computers with millions of quantum bits, or qubits - which can represent a one, a zero, or a coherent linear combination of one and zero - would revolutionize information processing for commercial and military applications.

Realizing that vision, however, is still decades away. The problem is the performance and reliability of quantum devices depend on the length of time the underlying quantum states can remain coherent.

If you wait long enough, interactions with the environment will make the state behave like a conventional classical system, removing any quantum advantage. Often, this coherence time is significantly short, which makes it difficult to perform any meaningful computations.

To exploit quantum information processing before fully fault-tolerant quantum computers exist, DARPA has announced its Optimization with Noisy Intermediate-Scale Quantum devices (ONISQ) program.

This effort will pursue a hybrid concept that combines intermediate-sized quantum devices with classical systems to solve a particularly challenging set of problems known as combinatorial optimization.

ONISQ seeks to demonstrate the quantitative advantage of quantum information processing by leapfrogging the performance of classical-only systems in solving optimization challenges. A Proposers Day for interested proposers is scheduled for March 19, 2019, at the Executive Conference Center in Arlington, Virginia here

"A number of current quantum devices with more than 50 qubits exist, and devices with greater than 100 qubits are anticipated soon," said Tatjana Curcic, program manager in DARPA's Defense Sciences Office.

"Qubits' short lifetime and noise in the system limit how many operations you can do efficiently, but a new quantum optimization algorithm has opened the door for a hybrid quantum/classical approach that could outperform classical systems."

Solving combinatorial optimization problems - with their mindboggling number of potential combinations - is of significant interest to the military. One potential application is enhancing the military's complex worldwide logistics system, which includes scheduling, routing, and supply chain management in austere locations that lack the infrastructure on which commercial logistics companies depend.

ONISQ solutions could also impact machine-learning, coding theory, electronic fabrication, and protein-folding.

ONISQ researchers will be tasked with developing quantum systems that are scalable to hundreds or thousands of qubits with longer coherence times and improved noise control. Researchers will also be required to efficiently implement a quantum optimization algorithm on noisy intermediate-scale quantum devices, optimizing allocation of quantum and classical resources.

Benchmarking will also be part of the program, with researchers making a quantitative comparison of classical and quantum approaches. In addition, the program will identify classes of problems in combinatorial optimization where quantum information processing is likely to have the biggest impact.

"If we're successful, the outcome of ONISQ will be the first demonstration of a quantum speedup compared to the best classical method for a useful problem," Curcic said.

ONISQ seeks multidisciplinary teams with expertise in experimental and theoretical physics, computer science and applied mathematics among others. DARPA plans to release a Broad Agency Announcement (BAA) solicitation in several weeks here


Related Links
Defense Advanced Research Projects Agency
Computer Chip Architecture, Technology and Manufacture
Nano Technology News From SpaceMart.com


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


CHIP TECH
Understanding high efficiency of deep ultraviolet LEDs
Sendai, Japan (SPX) Feb 26, 2019
Deep ultraviolet light-emitting diodes (DUV-LEDs) made from aluminium gallium nitride (AlGaN) efficiently transfer electrical energy to optical energy due to the growth of one of its bottom layers in a step-like fashion. This finding, published in the journal Applied Physics Letters, can lead to the development of even more efficient LEDs. AlGaN-based DUV-LEDs are receiving much research attention due to their potential use in sterilization, water purification, phototherapy, and sunlight-independe ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

CHIP TECH
Egypt to host Huawei's first MENA cloud platform: Cairo

A quantum magnet with a topological twist

New research opens door to more efficient chemical processes across spectrum of industries

Scientists produce colorless reservoir of platinum metal-like single atoms in liquid

CHIP TECH
Raytheon awarded $406M for Army aircraft radio system

Lockheed Martin to develop cyber electronic warfare pod for UAVs

Britain to spend $1.3M for satellite antennas in light of Brexit

Reflectarray Antenna offers high performance in small package: DARPA

CHIP TECH
CHIP TECH
Angry Norway says Russia jamming GPS signals again

Kite-blown Antarctic explorers make most southerly Galileo positioning fix

Magnetic north pole leaves Canada, on fast new path

NOAA releases early update for World Magnetic Model

CHIP TECH
Harris contracted for jammers for Navy F/A-18 aircraft

Honeywell awarded $150M for advanced turbine propulsion developmentw/ll

Boeing tapped for F-15E warning system development, testing

Bell Boeing signs $10.7M contract for V-22 Osprey radar upgrades

CHIP TECH
Understanding high efficiency of deep ultraviolet LEDs

Terahertz wireless makes big strides in paving the way to technological singularity

Spintronics by 'straintronics'

Running an LED in reverse could cool future computers

CHIP TECH
On its 5th Anniversary, GPM Still Right as Rain

KBRwyle Awarded $19M to Perform Flight Ops for USGS Satellite

SNoOPI: A flying ace for soil moisture and snow measurements

Earth's atmosphere stretches out to the Moon - and beyond

CHIP TECH
Innovative nanocoating technology harnesses sunlight to degrade microplastics

Italy's polluted Po Valley gasps for fresh air

Plastic found in deepest ocean animals

Nearly 50% of transport pollution deaths linked to diesel: study









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.