Space Industry and Business News  
OUTER PLANETS
SwRI scientists introduce cosmochemical model for Pluto formation
by Staff Writers
San Antonio, TX (SPX) May 24, 2018

New Horizons not only showed humanity what Pluto looks like, but also provided information on the composition of Pluto's atmosphere and surface. These maps - assembled using data from the Ralph instrument - indicate regions rich in methane (CH4), nitrogen (N2), carbon monoxide (CO) and water (H2O) ices. Sputnik Planitia shows an especially strong signature of nitrogen near the equator. SwRI scientists combined these data with Rosetta's comet 67P data to develop a proposed "giant comet" model for Pluto formation.

Southwest Research Institute scientists integrated NASA's New Horizons discoveries with data from ESA's Rosetta mission to develop a new theory about how Pluto may have formed at the edge of our solar system.

"We've developed what we call 'the giant comet' cosmochemical model of Pluto formation," said Dr. Christopher Glein of SwRI's Space Science and Engineering Division. The research is described in a paper published online today in Icarus. At the heart of the research is the nitrogen-rich ice in Sputnik Planitia, a large glacier that forms the left lobe of the bright Tombaugh Regio feature on Pluto's surface.

"We found an intriguing consistency between the estimated amount of nitrogen inside the glacier and the amount that would be expected if Pluto was formed by the agglomeration of roughly a billion comets or other Kuiper Belt objects similar in chemical composition to 67P, the comet explored by Rosetta."

In addition to the comet model, scientists also investigated a solar model, with Pluto forming from very cold ices that would have had a chemical composition that more closely matches that of the Sun.

Scientists needed to understand not only the nitrogen present at Pluto now - in its atmosphere and in glaciers - but also how much of the volatile element potentially could have leaked out of the atmosphere and into space over the eons. They then needed to reconcile the proportion of carbon monoxide to nitrogen to get a more complete picture. Ultimately, the low abundance of carbon monoxide at Pluto points to burial in surface ices or to destruction from liquid water.

"Our research suggests that Pluto's initial chemical makeup, inherited from cometary building blocks, was chemically modified by liquid water, perhaps even in a subsurface ocean," Glein said. However, the solar model also satisfies some constraints. While the research pointed to some interesting possibilities, many questions remain to be answered.

"This research builds upon the fantastic successes of the New Horizons and Rosetta missions to expand our understanding of the origin and evolution of Pluto," said Glein. "Using chemistry as a detective's tool, we are able to trace certain features we see on Pluto today to formation processes from long ago. This leads to a new appreciation of the richness of Pluto's 'life story,' which we are only starting to grasp."

The paper, "Primordial N2 provides a cosmochemical explanation for the existence of Sputnik Planitia, Pluto," is coauthored by Glein and Dr. J. Hunter Waite Jr., an SwRI program director.


Related Links
Southwest Research Institute
The million outer planets of a star called Sol


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


OUTER PLANETS
What do Uranus's cloud tops have in common with rotten eggs?
Washington DC (SPX) Apr 24, 2018
Hydrogen sulfide, the gas that gives rotten eggs their distinctive odor, permeates the upper atmosphere of the planet Uranus - as has been long debated, but never definitively proven. Based on sensitive spectroscopic observations with the Gemini North telescope, astronomers uncovered the noxious gas swirling high in the giant planet's cloud tops. This result resolves a stubborn, long-standing mystery of one of our neighbors in space. Even after decades of observations, and a visit by the Voyager 2 ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

OUTER PLANETS
New material detects the amount of UV radiation and helps monitor radiation dose

Latest Updates from NASA on IMAGE Recovery

Focus on space debris

Space Situational Awareness is Space Battle Management

OUTER PLANETS
Lockheed Martin's 5th AEHF comsat completes launch environment test

IAP Worldwide Services tapped for satellite systems

Hughes to prototype Multi-Modem Adaptor for Wideband SATCOM use

Navy awards contract to ViaSat for aircraft communication systems

OUTER PLANETS
OUTER PLANETS
Swift improves position accuracy and availability for precision farm and shipping customers

Satellite pair arrive for Galileo's next rumble in the jungle

Satellite row tests UK's post-Brexit security plans

Brexit prompts UK to probe developing satellite navigation system

OUTER PLANETS
Israel says first to use F-35 stealth fighter jets in combat

Research examines wing shapes to reduce vortex and wake

Taking Air Travel to the Streets, or Just Above Them

Airborne Tactical contracts for subsonic, supersonic simulation aircraft

OUTER PLANETS
A new method for studying semiconductor nanoparticles has been tested

Supersonic waves may help electronics beat the heat

Toshiba says China approves sale of chip unit to Bain consortium

High-sensitivity microsensors on the horizon

OUTER PLANETS
Scientists uncover likely cheating on ozone treaty

UAE Space Agency conducts MeznSat preliminary design review

NOAA reports rising concentration of ozone-eating CFCs

The open air as an underappreciated habitat

OUTER PLANETS
World's protected areas being rapidly destroyed by humanity

Researcher warns China's program 'riskiest environmental project in history'

People are pillaging the world's protected areas

EU chokes on own air quality standards









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.