Space Industry and Business News  
CHIP TECH
Surprising semiconductor properties revealed with innovative new method
by Staff Writers
Richland WA (SPX) Mar 02, 2022

Scanning transmission electron micrograph of the interface between germanium (bottom) and LSZTO (top). The individual atoms are labeled gold: germanium, red: oxygen, green: strontium and lanthanum, blue: titanium and zirconium.

A research team probing the properties of a semiconductor combined with a novel thin oxide film have observed a surprising new source of conductivity from oxygen atoms trapped inside.

Scott Chambers, a materials scientist at the Department of Energy's Pacific Northwest National Laboratory, reported the team's discovery at the Spring 2022 meeting of the American Physical Society. The research finding is described in detail in the journal Physical Review Materials.

The discovery has broad implications for understanding the role of thin oxide films in future semiconductor design and manufacture. Specifically, semiconductors used in modern electronics come in two basic flavors-n-type and p-type-depending on the electronic impurity added during crystal growth.

Modern electronic devices use both n- and p-type silicon-based materials. But there is ongoing interest in developing other types of semiconductors. Chambers and his team were testing germanium in combination with a specialized thin crystalline film of lanthanum-strontium-zirconium-titanium-oxide (LSZTO).

"We are reporting on a powerful tool for probing semiconductor structure and function," said Chambers. "Hard X-ray photoelectron spectroscopy revealed in this case that atoms of oxygen, an impurity in the germanium, dominate the properties of the material system when germanium is joined to a particular oxide material. This was a big surprise."

Using the Diamond Light Source on the Harwell Science and Innovation Campus in Oxfordshire, England, the research team discovered they could learn a great deal more about the electronic properties of the germanium/LSZTO system than was possible using the typical methods.

"When we tried to probe the material with conventional techniques, the much higher conductivity of germanium essentially caused a short circuit," Chambers said. "As a result, we could learn something about the electronic properties of the Ge, which we already know a lot about, but nothing about the properties of the LSZTO film or the interface between the LSZTO film and the germanium-which we suspected might be very interesting and possibly useful for technology."

A new role for hard X-rays
The so-called "hard" X-rays produced by the Diamond Light Source could penetrate the material and generate information about what was going on at the atomic level.

"Our results were best interpreted in terms of oxygen impurities in the germanium being responsible for a very interesting effect," Chambers said.

"The oxygen atoms near the interface donate electrons to the LSZTO film, creating holes, or the absence of electrons, in the germanium within a few atomic layers of the interface. These specialized holes resulted in behavior that totally eclipsed the semiconducting properties of both n- and p-type germanium in the different samples we prepared. This, too, was a big surprise."

The interface, where the thin-film oxide and the base semiconductor come together, is where interesting semiconducting properties often emerge. The challenge, according to Chambers, is to learn how to control the fascinating and potentially useful electric fields that forms at these interfaces by modifying the electric field at the surface. Ongoing experiments at PNNL are probing this possibility.

While the samples used in this research do not likely have the immediate potential for commercial use, the techniques and scientific discoveries made are expected to pay dividends in the longer term, Chambers said. The new scientific knowledge will help materials scientists and physicists better understand how to design new semiconductor material systems with useful properties.

PNNL researchers Bethany Matthews, Steven Spurgeon, Mark Bowden, Zihua Zhu and Peter Sushko contributed to the research. The study was supported by the Department of Energy Office of Science. Some experiments and sample preparation were performed at the Environmental Molecular Sciences Laboratory, a Department of Energy Office of Science user facility located at PNNL. Electron microscopy was performed in the PNNL Radiochemical Processing Laboratory. Collaborators Tien-Lin Lee and Judith Gabel performed experiments at the Diamond Light Source. Additional collaborators included the University of Texas at Arlington's Matt Chrysler and Joe Ngai, who prepared the samples.

Research Report: "Mapping hidden space-charge distributions across crystalline metal oxide/group IV semiconductor interfaces"


Related Links
Pacific Northwest National Laboratory
Computer Chip Architecture, Technology and Manufacture
Nano Technology News From SpaceMart.com


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


CHIP TECH
Toshiba CEO resigns ahead of vote on spin-off plan
Tokyo (AFP) March 1, 2022
Toshiba's CEO resigned on Tuesday, adding fresh uncertainty weeks before a key shareholder meeting on a plan to spin off the Japanese conglomerate's devices unit. Satoshi Tsunakawa had been chief executive for less than a year at the tech and industrial giant, which has lurched from crisis to crisis in recent years. He will continue to serve as interim chair of the board of directors, Toshiba said in a statement. His resignation comes ahead of an extraordinary shareholder vote on March 24 on ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

CHIP TECH
Using artificial intelligence to find anomalies hiding in massive datasets

Sanctions on Russia add to troubles facing global helium industry

Neural networks behind social media can consume an infinite amount of energy

Shares in Russia's top aluminium producer plunge

CHIP TECH
Lockheed Martin to deliver 42 smallsats for SDA's Transport Layer

Space Micro lands Space Development Agency contract for optical communications

Lockheed Martin to prototype new US Marine Corps 5G communications system

Raytheon Intelligence and Space completes Next Gen OPIR GEO Block 0 Milestone

CHIP TECH
CHIP TECH
Northrop Grumman equips US Marines with Next Generation Handheld Targeting Device

The drone has landed

China completes health check on BDS satellite constellation

Providing GPS-quality timing accuracy without GPS

CHIP TECH
Eight dead in Romania chopper, fighter jet crashes

Low-profile Russian air force puzzles Western experts

Sign Up to Fly with NASA Using the Flight Log Experience

Controlling multiple airports from one control centre

CHIP TECH
DLR and NASA are jointly developing a software package for quantum computers

Surprising semiconductor properties revealed with innovative new method

Using two different elements in hybrid atomic quantum computers

NGI uses twist to engineer 2D semiconductors with built-in memory functions

CHIP TECH
Planet Labs PBC launches next generation PlanetScope with Eight Spectral Bands

L3Harris high-resolution weather instrument set to launch on NOAA's GOES-T

NASA develops technology to dissect the lower atmosphere

New sensor paves way for mapping the world under Earth surface

CHIP TECH
UN to take first step towards 'historic' plastic treaty

Africa faces tough job not to become world's plastic 'dustbin'

UN to agree on plan for 'historic' plastics treaty

Plastic treaty would be historic for planet: UNEP chief









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.