Space Industry and Business News  
TIME AND SPACE
Supersolid in a new dimension
by Staff Writers
Innsbruck, Austria (SPX) Aug 19, 2021

Two-dimensional supersolid quantum gas produced in the laboratory for the first time. (illustration only)

Quantum gases are very well suited for investigating the microscopic consequences of interactions in matter. Today, scientists can precisely control individual particles in extremely cooled gas clouds in the laboratory, revealing phenomena that cannot be observed in the every-day world. For example, the individual atoms in a Bose-Einstein condensate are completely delocalized. This means that the same atom exists at each point within the condensate at any given time.

Two years ago, the research group led by Francesca Ferlaino from the Department of Experimental Physics at the University of Innsbruck and the Institute of Quantum Optics and Quantum Information at the Austrian Academy of Sciences in Innsbruck managed for the first time to generate supersolid states in ultracold quantum gases of magnetic atoms. The magnetic interaction causes the atoms to self-organize into droplets and arrange themselves in a regular pattern.

"Normally, you would think that each atom would be found in a specific droplet, with no way to get between them," says Matthew Norcia of Francesca Ferlaino's team. "However, in the supersolid state, each particle is delocalized across all the droplets, existing simultaneously in each droplet. So basically, you have a system with a series of high-density regions (the droplets) that all share the same delocalized atoms."

This bizarre formation enables effects such as frictionless flow despite the presence of spatial order (superfluidity).

New dimensions, new effects to explore
Until now, supersolid states in quantum gases have only ever been observed as a string of droplets (along one dimension). "In collaboration with theorists Luis Santos at Leibniz University Hannover and Russell Bisset in Innsbruck we have now extended this phenomenon to two dimensions, giving rise to systems with two or more rows of droplets," explains Matthew Norcia. This is not only a quantitative improvement, but also crucially broadens the research perspectives.

"For example, in a two-dimensional supersolid system, one can study how vortices form in the hole between several adjacent droplets," he says. "These vortices described in theory have not yet been demonstrated, but they represent an important consequence of superfluidity," Francesca Ferlaino is already looking into the future. The experiment now reported in the journal Nature creates new opportunities to further investigate the fundamental physics of this fascinating state of matter.

New research field: Supersolids
Predicted 50 years ago, supersolidity with its surprising properties has been investigated extensively in superfluid helium. However, after decades of theoretical and experimental research, a clear proof of supersolidity in this system was still missing.

Two years ago, research groups in Pisa, Stuttgart and Innsbruck independently succeeded for the first time in creating so-called supersolids from magnetic atoms in ultracold quantum gases. The basis for the new, growing research field of supersolids is the strong polarity of magnetic atoms, whose interaction characteristics enable the creation of this paradoxical quantum mechanical state of matter in the laboratory.

The research was financially supported by the Austrian Science Fund FWF, the Federal Ministry of Education, Science and Research and the European Union, among others.

Research Report: "Two-dimensional supersolidity in a dipolar quantum gas"


Related Links
University Of Innsbruck
Understanding Time and Space


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


TIME AND SPACE
Antimatter from laser pincers
Dresden, Germany (SPX) Jul 24, 2021
In the depths of space, there are celestial bodies where extreme conditions prevail: Rapidly rotating neutron stars generate super-strong magnetic fields. And black holes, with their enormous gravitational pull, can cause huge, energetic jets of matter to shoot out into space. An international physics team with the participation of the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) has now proposed a new concept that could allow some of these extreme processes to be studied in the laboratory in the future: ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TIME AND SPACE
Purdue-designed heat transfer experiment arrives at International Space Station

Experiment bound for Space Station turns down the heat

DARPA selects research teams to enable quantum shift in spectrum sensing

End tax breaks for gaming firms, says Chinese state media

TIME AND SPACE
Last Tianlian I satellite placed in orbit

China's relay satellites facilitate clear, smooth space-ground communication

Filtering out interference for next-generation wideband arrays

ESA helps Europe boost secure connectivity

TIME AND SPACE
TIME AND SPACE
2nd SOPS accepts new GPS satellite

GMV develops a new maritime Galileo receiver

NASA extends Cyclone Global Navigation Satellite System mission

Orolia's GNSS Simulators now support an ultra-low latency of five milliseconds

TIME AND SPACE
NASA tests machine to power the future of aviation propulsion

JetPack Aviation announces selection in AFWERX High Speed VTOL Concept Challenge

Lockheed Martin unveils intelligent, flexible factory at the Skunk Works in Palmdale, California

Eight feared dead as Russia tourist helicopter crashes into lake

TIME AND SPACE
Magnetic materials could improve the performance of quantum computing circuits

Google to build its own chip for new Pixel smartphone

The chips are down: why there's a semiconductor shortage

Concepts for the development of German quantum computers

TIME AND SPACE
NASA unveils new interactive website ahead of Landsat 9 launch

Indian Space Research Organisation fails to place earth observation satellite in orbit

Stanford researchers use artificial intelligence to unlock extreme weather mysteries

Gearing up for third Sentinel-2 satellite

TIME AND SPACE
Contested Chilean mining project given crucial boost

Common air, water pollutants disrupt mucus structure, function

Court fines France record sum over air pollution

Small rise in airborne pollutant exposure increases dementia risk, study finds









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.