Space Industry and Business News  
TIME AND SPACE
Superconductivity research reveals potential new state of matter
by Staff Writers
Los Alamos NM (SPX) Aug 21, 2017


Carefully aligned microstructured devices of CeRhIn5 enabled high field transport measurements that reveal an in-plane symmetry breaking for magnetic fields of approximately 30 Tesla along the tetragonal c-axis. The anomaly size and direction is determined by a small in-plane component of the magnetic field. Credit Los Alamos National Laboratory.

A potential new state of matter is being reported in the journal Nature, with research showing that among superconducting materials in high magnetic fields, the phenomenon of electronic symmetry breaking is common. The ability to find similarities and differences among classes of materials with phenomena such as this helps researchers establish the essential ingredients that cause novel functionalities such as superconductivity.

The high-magnetic-field state of the heavy fermion superconductor CeRhIn5 revealed a so-called electronic nematic state, in which the material's electrons aligned in a way to reduce the symmetry of the original crystal, something that now appears to be universal among unconventional superconductors. Unconventional superconductivity develops near a phase boundary separating magnetically ordered and magnetically disordered phases of a material.

"The appearance of the electronic alignment, called nematic behavior, in a prototypical heavy-fermion superconductor highlights the interrelation of nematicity and unconventional superconductivity, suggesting nematicity to be common among correlated superconducting materials," said Filip Ronning of Los Alamos National Laboratory, lead author on the paper. Heavy fermions are intermetallic compounds, containing rare earth or actinide elements.

"These heavy fermion materials have a different hierarchy of energy scales than is found in transition metal and organic materials, but they often have similar complex and intertwined physics coupling spin, charge and lattice degrees of freedom," he said.

The work was reported in Nature by staff from the Los Alamos Condensed Matter and Magnet Science group and collaborators.

Using transport measurements near the field-tuned quantum critical point of CeRhIn5 at 50 Tesla, the researchers observed a fluctuating nematic-like state. A nematic state is most well known in liquid crystals, wherein the molecules of the liquid are parallel but not arranged in a periodic array.

Nematic-like states have been observed in transition metal systems near magnetic and superconducting phase transitions. The occurrence of this property points to nematicity's correlation with unconventional superconductivity. The difference, however, of the new nematic state found in CeRhIn5 relative to other systems is that it can be easily rotated by the magnetic field direction.

The use of the National High Magnetic Field Laboratory's pulsed field magnet facility at Los Alamos was essential, Ronning noted, due to the large magnetic fields required to access this state. In addition, another essential contribution was the fabrication of micron-sized devices using focused ion-beam milling performed in Germany, which enabled the transport measurements in large magnetic fields.

Superconductivity is extensively used in magnetic resonance imaging (MRI) and in particle accelerators, magnetic fusion devices, and RF and microwave filters, among other uses.

Research Report: "Electronic in-plane symmetry breaking at field-tuned quantum criticality in CeRhIn5"

TIME AND SPACE
Researchers set record for fastest light pulse
Orlando FL (SPX) Aug 09, 2017
A research team at the University of Central Florida has demonstrated the fastest light pulse ever developed, a 53-attosecond X-ray flash. The group led by Professor Zenghu Chang beat its own record set in 2012: a 67-attosecond extreme ultraviolet light pulse that was the fastest at the time. At one-quintillionth of a second, an attosecond is unimaginably fast. In 53 attoseconds, lig ... read more

Related Links
Los Alamos National Laboratory
Understanding Time and Space


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


Comment using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TIME AND SPACE
Surprise discovery in the search for energy efficient information storage

Electricity and silver effective at keeping bacteria off plastics

Researchers 3-D print first truly microfluidic 'lab on a chip' devices

2-faced 2-D material is a first at Rice

TIME AND SPACE
82nd Airborne tests in-flight communication system for paratroopers

North Dakota UAS Training Center Depends on IGC Satellite Connectivity

New SQUID-based detector opens up new fields of study with new level of sensitivity

Joint Stars aircraft getting communications upgrade

TIME AND SPACE
TIME AND SPACE
IAI, Honeywell Aerospace team for GPS anti-jam system

Lockheed Martin Begins Modernizing Receivers for U.S. Air Force's GPS Signal Monitoring Stations

Russia, China to Set Up Pilot Zone to Test National Navigation Systems

India Plans to Roll Out National GPS Next Year

TIME AND SPACE
Troubled Cathay loses HK$2.05 billion in first half 2017

Objects spotted near suspected MH370 crash site - Australia

France and Germany announce new joint fighter program

Honeywell, Pratt and Whitney contracted by Air Force for power system support

TIME AND SPACE
Single molecules can work as reproducible transistors - at room temperature

New ultrathin semiconductor materials exceed some of silicon's 'secret' powers

Single-photon emitter has promise for quantum info-processing

A semiconductor that can beat the heat

TIME AND SPACE
Nickel key to Earth's magnetic field, research shows

Successful filming of fastest aurora flickering

Teledyne Brown Engineering and Oakman Aerospace, Inc. to partner on MUSES Platform

NASA airborne mission returns to Africa to study smoke, clouds

TIME AND SPACE
Canada looking to add environmental protections to NAFTA

Probiotics help poplar trees clean up toxins in Superfund sites

Cambodia bans overseas exports of coastal sand

Anger mounts in Hong Kong over massive palm oil spill









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.