Subscribe free to our newsletters via your
. Space Industry and Business News .




ENERGY TECH
Superconductivity breakthroughs
by Staff Writers
Saskatoon, Canada (SPX) Mar 23, 2015


In the superconducting state, electricity flows with absolutely no resistance, which means no energy is lost and no heat is generated. Combined, these properties allow for large 'supercurrents' that could not be realized in ordinary wires.

The Canadian research community on high-temperature superconductivity continues to lead this exciting scientific field with groundbreaking results coming hot on the heels of big theoretical questions.

The latest breakthrough, which will be published March 20 in Science, answers a key question on the microscopic electronic structure of cuprate superconductors, the most celebrated material family in our quest for true room-temperature superconductivity.

This result is the product of a longstanding close collaboration between the University of British Columbia Quantum Matter Institute and the Canadian Light Source. In fact, this is the third Science paper to come out of this remarkably fruitful collaboration this past year, and the first to feature an all-Canadian effort.

The collaborators work at the forefront of research into high-temperature superconductors, an exciting class of materials exhibiting superconductivity at temperatures as comparatively warm as -100?C. As frigid as such temperature may sound, it outperforms by far traditional superconductors, which operate at closer to -270?C, or a few degrees from absolute zero - the point where all motion stops."

In the superconducting state, electricity flows with absolutely no resistance, which means no energy is lost and no heat is generated. Combined, these properties allow for large 'supercurrents' that could not be realized in ordinary wires.

For this reason, superconductors are already used to provide the large magnetic fields needed for Magnetic Resonance Imaging, but the cooling systems needed to make them work are costly and impede other potential uses. Some of the major, transformative applications of room-temperature superconductivity include magnetic levitation trains and lossless power lines. (Imagine getting rid of that pesky delivery charge on your energy bill--room temperature superconductivity could make it possible.)

The paper's lead author, Riccardo Comin, a UBC graduate from Andrea Damascelli's group and now a post-doctoral fellow at the University of Toronto, compares the movement of electrons in a superconductor to birds flying in formation, coherently and without collisions. In physics-speak, the electrons move coherently and in phase, and no energy is lost as they drift smoothly along.

In cuprate superconductors, another state blocks and interacts with superconductivity: the charge-density-wave, in which the electrons assume a static pattern, different from the pattern that the material's crystal structure defines.

You can also think of the superconducting electrons like cars on a highway, all moving the same speed and direction, the picture of efficiency. But the charge-density-wave state acts like a patterned traffic jam: no movement, anywhere.

Understanding what causes this pattern is thought to be a key step to understanding superconductivity, but even pinning down the nature of the pattern has been elusive. Major theoretical models predict either a parallel line structure, or a checkerboard pattern. Unfortunately, even with advanced synchrotron techniques, it has proved impossible to see the difference between the two models.

That is, until Comin's latest results in Science, which show that the cuprate superconductor in question has a stripe-like pattern rather than a checkerboard one. The UBC-CLS team used an unconventional experimental approach to reconstruct a 2-dimensional model of the static electron pattern from 1-dimensional scans--much like the tomographic reconstructions used for medical purposes.

These results offer new fundamental insights helping hone the search for room temperature superconductivity. However, more challenging questions remain. Among these puzzles: What is the driving force behind the tendency of electrons to move together coherently in the superconducting state, and how can the superconductivity transition temperature be further enhanced? Despite almost 30 years of history, the field of high temperature superconductivity is more alive than ever.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Canadian Light Source, Inc.
Powering The World in the 21st Century at Energy-Daily.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








ENERGY TECH
You can't play checkers with charge ordering
Toronto, Canada (SPX) Mar 23, 2015
CIFAR fellows were among physicists who observed the shape of a strange phenomenon that interferes with high-temperature superconductivity called charge ordering, discovering that it is stripy, not checkered, and settling a long-standing debate in the field. Charge ordering creates instability in some metals at temperatures warmer than about -100 degrees Celsius, causing some electrons to ... read more


ENERGY TECH
Want to snag a satellite? Try a net

Slight surface movements on the radar

Spacecraft Power Systems

Processing Paradigms That Accelerate Computer Simulations

ENERGY TECH
Unfurlable Mesh Antennas Deployed On Third MUOS Satellite

Harris continues engineering support for government communications

Russia Starts Large-Scale Communications Drills in Nine Regions

SES Conducts Second O3b Satellite Demonstration for the US Government

ENERGY TECH
Kosmotras Denies Reports of Suspending Russian-Ukrainian Launches

Arianespace selected by Airbus to launch EDRS-C Satellite

US to Scrap Delta IV Launch Vehicle in Favor of Russian-Made Rocket

Proton launches Express AM-7 satellite for Russian Government

ENERGY TECH
3-D satellite, GPS earthquake maps isolate impacts in real time

Rockwell Collins providing secure GPS receivers for Harris tactical radios

Galileo meets Galileo as launch draws near

Sixth Galileo satellite reaches corrected orbit

ENERGY TECH
NASA reveals electric plane with 18 motors

India receiving upgraded Mirage fighters

Sikorsky, Polish subsidiary sweeten helicopter contract bid

LEAPTech to Demonstrate Electric Propulsion Technologies

ENERGY TECH
Quantum computing: 1 step closer with defect-free logic gate

A new way to control light, critical for next-gen of super fast computing

Optical fibers light the way for brain-like computing

KAIST develops ultrathin polymer insulators key to low-power soft electronics

ENERGY TECH
UK data hub will maximize benefits of Europe's EO program

US and UAE Ink Bilateral Space Cooperation

New NASA Mission to Study Ocean Color, Airborne Particles and Clouds

NASA spacecraft in Earth's orbit, preparing to study magnetic reconnection

ENERGY TECH
Air pollutants may bolster airborne allergens

Paris forces even-numbered cars off roads to fight smog

River algae affecting mercury pollution at Superfund site

Russia brands branch of Norwegian eco group 'foreign agent'




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.