Space Industry and Business News  
TECH SPACE
Super wood could replace steel
by Staff Writers
College Park MD (SPX) Feb 15, 2018

illustration only

Engineers at the University of Maryland, College Park (UMD) have found a way to make wood more than 10 times times stronger and tougher than before, creating a natural substance that is stronger than many titanium alloys.

"This new way to treat wood makes it 12 times stronger than natural wood and 10 times tougher," said Liangbing Hu of UMD's A. James Clark School of Engineering and the leader of the team that did the research, to be published on February 8, 2018 in the journal Nature.

"This could be a competitor to steel or even titanium alloys, it is so strong and durable. It's also comparable to carbon fiber, but much less expensive." Hu is an associate professor of materials science and engineering and a member of the Maryland Energy Innovation Institute.

"It is both strong and tough, which is a combination not usually found in nature," said Teng Li, the co-leader of the team and Samuel P. Langley Associate Professor of mechanical engineering at UMD's Clark School. His team measured the dense wood's mechanical properties.

"It is as strong as steel, but six times lighter. It takes 10 times more energy to fracture than natural wood. It can even be bent and molded at the beginning of the process."

The team also tested the new wood material and natural wood by shooting bullet-like projectiles at it. The projectile blew straight through the natural wood. The fully treated wood stopped the projectile partway through.

"Soft woods like pine or balsa, which grow fast and are more environmentally friendly, could replace slower-growing but denser woods like teak in furniture or buildings," Hu said.

"The paper provides a highly promising route to the design of lightweight, high performance structural materials, with tremendous potential for a broad range of applications where high strength, large toughness and superior ballistic resistance are desired, " said Huajian Gao, a professor at Brown University who was not involved in the study.

"It is particularly exciting to note that the method is versatile for various species of wood and fairly easy to implement."

"This kind of wood could be used in cars, airplanes, buildings - any application where steel is used," Hu said.

"The two-step process reported in this paper achieves exceptionally high strength, much beyond what [is] reported in the literature," said Zhigang Suo, a professor of mechanics and materials at Harvard University, also not involved with the study.

"Given the abundance of wood, as well as other cellulose-rich plants, this paper inspires imagination."

"The most outstanding observation, in my view, is the existence of a limiting concentration of lignin, the glue between wood cells, to maximize the mechanical performance of the densified wood. Too little or too much removal lower the strength compared to a maximum value achieved at intermediate or partial lignin removal.

This reveals the subtle balance between hydrogen bonding and the adhesion imparted by such polyphenolic compound. Moreover, of outstanding interest, is the fact that that wood densification leads to both, increased strength and toughness, two properties that usually offset each other," said Orlando J. Rojas, a professor at Aalto University in Finland.

Hu's research has explored the capacities of wood's natural nanotechnology. They previously made a range of emerging technologies out of nanocellulose related materials: (1) super clear paper for replacing plastic; (2) photonic paper for improving solar cell efficiency by 30%; (3) a battery and a supercapacitor out of wood; (4) a battery from a leaf; (5) transparent wood for energy efficient buildings; (6) solar water desalination for drinking and specifically filtering out toxic dyes. These wood-based emerging technologies are being commercialized through a UMD spinoff company, Inventwood LLC.

Research paper


Related Links
University of Maryland
Space Technology News - Applications and Research


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


TECH SPACE
Quantum control
Moscow, Russia (SPX) Feb 05, 2018
An international team consisting of Russian and German scientists has made a breakthrough in the creation of seemingly impossible materials. They have managed to create the world`s first quantum metamaterial which can be used as a control element in superconducting electrical circuits. Metamaterials are substances whose properties are determined not so much by the atoms they consist of, but by the atoms' structural arrangement. Each structure is hundreds of nanometers, and has its own set of prope ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TECH SPACE
Scientists can now 3D print nanoscale metal structures

Helping authorities respond more quickly to airborne radiological threats

A Detailed Timeline of The IMAGE Mission Recovery

Singapore takes next step towards implementing world's first space-based VHF communications

TECH SPACE
Improve European defence with new commercial space capabilities

Military innovation demands state-of-the-art satellite connectivity for maritime applications

L-3 to provide advanced optics, sensors to U.S. Air Force

DARPA Seeks to Improve Military Communications with Digital Phased-Arrays at Millimeter Wave

TECH SPACE
TECH SPACE
Europe claims 100 million users for Galileo satnav system

Airbus selected by ESA for EGNOS V3 program

Pentagon probes fitness-app use after map shows sensitive sites

China sends twin BeiDou-3 navigation satellites into space

TECH SPACE
Boeing, Embraer near deal on commercial air business: source

Malaysia says no mystery over 'missing' MH370 search ship

Lockheed Martin picks BAE Systems to modernize UAE's F-16 fleet

Lockheed awarded $119M for support of Air Force F-35s

TECH SPACE
Understanding heat behavior in electronic devices boosts performance

Artificial agent designs quantum experiments

2-D tin stanene without buckling: A possible topological insulator

Quantum race accelerates development of silicon quantum chip

TECH SPACE
Ozone at lower latitudes not recovering, despite ozone hole healing

SSTL and 21AT announce new Earth Observation data contract

NASA Space Sensors to Address Key Earth Questions

Ozone layer declining over populated zones: study

TECH SPACE
An efficient and sustainable way to filter salt and metal ions from water

Vietnam activist jailed for 14 years over fish kill protests

Duterte slams top Philippine tourist island as 'cesspool'

In Kosovo's capital, 'breathing harms health'









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.