Space Industry and Business News  
TIME AND SPACE
Super sensitive devices work on recycling atoms
by Staff Writers
Brisbane, Australia (SPX) Apr 13, 2017


The atom interferometer uses the quantum 'wave-like' nature of atoms to make precise measurements.

Next-generation sensors to be used in fields as diverse as mineral exploration and climate change will be turbo boosted thanks to University of Queensland and University of Sussex research.

Theoretical physicist Dr Stuart Szigeti, of UQ's School of Mathematics and Physics, said future precision sensing technology would exploit unusual effects of quantum mechanics.

"Our research showed a way to recycle atoms and reuse them in a device called an atom interferometer," Dr Szigeti said.

"This technique will vastly improve the performance of these devices, leading to improved sensing technology.

"An atom interferometer uses the quantum 'wave-like' nature of atoms in order to make very precise measurements of accelerations, rotations, and gravitational fields"

Dr Szigeti, who works within one of five nodes of the Australian Research Council Centre for Engineered Quantum Systems, said the devices would have applications on land and sea.

"They can be used in mineral exploration, allowing us to more easily locate mineral reserves underground, and in hydrology, allowing us to track the movement of water across the planet as we monitor the effects of climate change," he said.

"They'll also be important in navigation."

Dr Simon Haine, from the University of Sussex, said the development of precise atom interferometers had been hampered by an effect known as quantum noise, which was uncertainty in a quantum system signal.

"Quantum noise can be combatted with a property of quantum mechanics known as 'entanglement'," he said.

"Proof-of-principle experiments have recently shown how to generate entanglement within atom interferometers, and have used this to alleviate the effects of quantum noise.

"However, this comes at a cost, as in the process of creating entanglement, most of the atoms are wasted, which hinders the performance of these devices.

"Our project has found a way to harvest and recycle these atoms to improve the sensitivity of ultra-precise measurement devices."

The research, involving Dr Szigeti, Dr Haine and colleague Dr Robert Lewis-Swan from UQ, has been published in Physical Review Letters.

TIME AND SPACE
The most accurate measurement of rare meson decay confirms modern physics
Cracow, Poland (SPX) Apr 13, 2017
All physical theories are to a greater or lesser extent, but always only simplified representations of reality and, as a consequence, have a specified range of applicability. Many scientists working on the LHCb experiment at CERN had hoped that the just achieved, exceptional accuracy in the measurement of the rare decay of the Bs0 meson would at last delineate the limits of the Standard Model, t ... read more

Related Links
University of Queensland
Understanding Time and Space


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


Comment using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TIME AND SPACE
Despite EU fines, Greece struggling to promote recycling

New method for 3-D printing extraterrestrial materials

Ultra-thin multilayer film for next-generation data storage and processing

USC Viterbi researchers develop new class of optoelectronic materials

TIME AND SPACE
US Strategic Command, Norway sign agreement to share space services, data

Pentagon urges Russia not to hang up military hotline

AF announces major changes to space enterprise

U.K. picks General Dynamics for battlefield communications project

TIME AND SPACE
TIME AND SPACE
Galileo's search and rescue service in the spotlight

Russia inaugurates GPS-type satellite station in Nicaragua

Northrop Grumman, Honeywell receive EGI-M contracts

China's BeiDou system to expand cooperation to SE Asia

TIME AND SPACE
Airbus talks with military plane clients 'constructive': Enders

Lockheed Martin gets $372 million contract mod for F-35 work

U.S. Air Force to extend service life for F-16 fleet

Navy continues grounding of T-45 trainer aircraft

TIME AND SPACE
Touch-sensitive, elastic fibers offer new interface for electronics

Microprocessors based on a layer of just 3 atoms

Streamlining mass production of printable electronics

Irish researchers make major breakthrough in smart printed electronics

TIME AND SPACE
Scientists link California droughts and floods to distinctive atmospheric waves

Satellites map carbon sequestered by forests, with accuracy of up to 10 meters

As CO2 levels increase, airplane rides get bumpier

Spaceflight Industries Reveals BlackSky Spectra

TIME AND SPACE
Polluted London sets its sights on cars

Road salt runoff threatens US, Canada lakes: study

Shanghai river clean-up leaves boat-dwellers in limbo

Bangladesh closes one of world's most polluted places









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.