Space Industry and Business News
TECH SPACE
Student-built satellite uses 'beach ball' for an antenna
Artist's impression of CatSat with its antenna inflated in orbit around Earth. To compensate for any small leaks it may incur from encounters with space debris or micrometeorites, the engineers provided it with enough gas onboard to completely refill the "balloon" 25 times. FreeFall Aerospace
Student-built satellite uses 'beach ball' for an antenna
by Kylianne Chadwick | NASA Writing Intern
Tucson AZ (SPX) Mar 14, 2023

Scientists and engineers at the University of Arizona have built instruments for three NASA telescopes, led two deep space missions and made it possible to see farther back in space and time than ever before. Adding to this list of space exploration accomplishments is a different type of project - one led entirely by students.

Near the university's main campus, students gather inside a cleanroom wearing lab coats, gloves and hairnets. On their lab bench sits a complex maze of wires and metal, the dimensions of a family-size cereal box. Each component has been optimized to survive a rocket launch and orbit the Earth.

After years of designing, building and testing, a team of UArizona students has readied CatSat, a small satellite known as a CubeSat, for launch into space. The spacecraft was designed to demonstrate new space technology and overcome a major challenge in space exploration: high-speed, low-cost communication across vast distances. Reminiscent of a beach ball, the satellite's antenna is expected to transfer information from space to Earth at high data rates.

If everything goes according to plan, the satellite won't just demonstrate new space technology; it will also probe the ionosphere - a layer of charged particles at the boundary between the Earth's atmosphere and space - so that the team can better understand the ionosphere's ever-changing structure. This structure impacts the propagation of high-frequency radio signals.

CubeSats are miniature cube-shaped satellites that orbit Earth and range in size from a 10-centimeter cube to a desktop computer. CubeSats are made with modular, relatively low-cost components, allowing many universities and other educational institutions to get involved in space exploration.

CatSat is a so-called 6U CubeSat, meaning it consists of six conjoined cubes, each measuring 4 inches along their edges. Unlike other CubeSats, it has an inflatable antenna, developed by Freefall Aerospace, a Tucson-based startup company and spinoff that was brought to be with the help of the university's commercialization arm, Tech Launch Arizona. Stored inside of CatSat is a high-performance, software-defined radio named AstroSDR, which was designed, built and donated by Rincon Research Corporation. After launch, the inflatable antenna, AstroSDR and other components will work together to send down high-resolution images of Earth almost instantaneously.

"Following a successful launch, this inflatable antenna will be the first of its kind in space," said Hilliard Paige, a systems engineering student and the project's lead systems engineer. "If it works, it will be a pathfinder for future missions."

The project began in 2019 when Chris Walker, a UArizona professor of astronomy, along with a team of faculty members from other departments, submitted a proposal to NASA as part of the NASA CubeSat Launch Initiative. NASA saw potential and agreed to provide a launch vehicle for CatSat.

"The technology demonstrated by CatSat opens the door to the possibility of future lunar, planetary and deep-space missions using CubeSats," said Walker, who also is the co-founder of FreeFall Aerospace. "CatSat puts the University of Arizona at the forefront of these efforts."

Inflatable antennas could give an edge to small spacecraft
All spacecraft require antennas to transmit and receive signals, allowing for communication with Earth. Yet, the capabilities of CubeSat antennas have historically been restricted, as CubeSats can only carry very small antennas. Signals from these small antennas can take days to finally reach Earth.

CatSat's inflatable antenna, invented by Walker at UArizona and further developed by Freefall Aerospace, combats this problem thanks to its lightweight material that tightly folds within the spacecraft. After launch, CatSat will stabilize its orientation so that it can eventually deploy the stowed antenna membrane and inflate it with helium and argon gas.

This inflated membrane is not unlike a large, floating foil birthday balloon. It has a clear lower hemisphere and an aluminum-coated upper hemisphere designed to reflect signals back down to Earth. The antenna's large surface allows for downlink speeds many times faster than comparable CubeSats.

Freefall Aerospace and the CatSat student team hope that inflatable antennas could level the playing field, allowing smaller and cheaper spacecraft to explore places beyond Earth.

"This technology could drive down the cost of high-quality scientific measurements in space by enabling the use of lightweight, low-cost antennas with very high data rates," said Aman Chandra, a doctoral student in mechanical engineering who is responsible for much of CatSat's mechanical design, including the inflatable antenna system.

Scientific exploration of the ionosphere
On the opposite end of CatSat's inflatable antenna is a "whip" antenna, about 2 feet long and shaped like a protruding stick. It was designed to receive low-power, automated, high-frequency beacons from thousands of Earthbound amateur radio enthusiasts. Radio signals in the high-frequency range can bounce off or refract from the ionosphere and travel to far-reaching locations by "bending around the Earth." Amateur, or ham, radio takes advantage of this charged layer of the atmosphere to broadcast information all around the globe.

"The ionosphere's density changes between night and day as radiation from the sun affects the density of its charged particles," Chandra said. "By listening to the strength of radio signals in the high-frequency range, we can estimate how the density of the ionosphere changes over time."

The ionosphere's mysterious, fluctuating density can sometimes alter the precision of GPS signals. Minuscule alterations can be both inconvenient and catastrophic depending on the application. Because of this, the students believe it is essential to understand how the ionosphere behaves at all times.

CatSat will listen from above the ionosphere to high-frequency radio signals using the whip antenna and Rincon Research radio. The CatSat team will then compare these signals to what Earthbound radio operators hear. In this way, the team plans to identify trends in ionospheric properties in order to better understand how they change from day to night.

The student experience
Shae Henley is an undergraduate who began working on CatSat during her first year at the university, where she majors in aerospace engineering. Since then, some daily tasks have included hands-on assembly of the spacecraft, as well as repairing and testing balloons for the inflatable antenna.

"I love working in the cleanroom with CatSat and I'm very lucky to have this experience as only a junior in college," Henley said. "Working on CatSat has helped me become more comfortable in a work environment where I can apply what I'm learning in school."

However, the work wasn't always easy. While working on space hardware, the students encountered difficulties that sometimes forced them to change their plans and designs.

"Many pieces on the CatSat weren't our first choice," said Del Spangler, a graduate student in electrical and computer engineering and the project's lead electrical engineer. "While some of the hardware isn't necessarily meant for space, we've still been able to make it work."

"From a CubeSat to a billion-dollar space mission, there's always going to be challenges," said Dathon Golish, a scientist in the UArizona Lunar and Planetary Laboratory who previously led CatSat activities.

Other major setbacks included a damaged piece of equipment and a faulty battery that delayed development by six months.

"At moments, working on the CatSat has been frustrating, as engineering often is," Spangler said. "But overcoming all of the difficult problems we've faced has been a really good feeling."

Waiting for a ride
Once CatSat is assigned a launch date, expected later this year, a Firefly Alpha rocket will lift it into an orbit 340 miles above Earth, the approximate distance from Phoenix to Los Angeles. The satellite will remain in a sun-synchronous orbit, a path that will almost always keep it in direct sunlight and out of Earth's shadow. Once it has launched from Vandenburg Space Force Base in California, the responsibilities of the student team are far from over.

"I'm in the process of getting my ham radio license so that I'll be able to communicate with CatSat in orbit," Henley said. "From our CatSat UHF (ultra-high-frequency) ground stations, we'll collect ionospheric data and check up on how the satellite is doing."

One of the ground stations that will be listening to CatSat's signals is a 6-meter dish antenna located at UArizona's Biosphere 2. If the antenna functions correctly, it will provide images of Earth in close to real time, proving its effectiveness for quick data transfer.

"Students working on a CubeSat mission have the opportunity to see the whole life cycle of a space mission from start to finish," Golish said. "Regardless of end results, CatSat is already an accomplishment because it's given these students experience that's very difficult to come by otherwise."

Related Links
CatSat at UA
Space Technology News - Applications and Research

Subscribe Free To Our Daily Newsletters
Tweet

RELATED CONTENT
The following news reports may link to other Space Media Network websites.
TECH SPACE
Antenova's tiny GNSS module with integrated antenna, high precision and low power
Hatfield UK (SPX) Mar 13, 2023
Antenova Ltd, the UK-based manufacturer of antennas and RF antenna modules for M2M and the IoT, is to reveal its latest compact high precision GNSS module at Embedded World. The new product, GNSSNova M20072, is a GNSS receiver with integrated GNSS antenna and greatly reduced power consumption. M20072 uses a MediaTek 12nm low energy chip with 1.8V power supply which uses 70% less power than older chipsets. The power consumption of the module can therefore be as low as 21mW for a GPS fitness tracker ... read more

TECH SPACE
Ball Aerospace prototype payload to provide on-orbit data processing

Student-built satellite uses 'beach ball' for an antenna

Airbus partners with Kythera for OneSat mission sizing software

Keysight introduces 2 GHz real-time spectrum analysis solution for satellite operators

TECH SPACE
Space Systems Command demonstrates satellite anti-jam capability

Silvus Technologies unveils Spectrum Dominance

Rensselaer researcher breaks through the clouds to advance satellite communication

SpaceX launches 40 more Internet satellites for competitor

TECH SPACE
TECH SPACE
Adtran and Satelles partner to deliver Satellite Time and Location alternative to GNSS

Navigation Lab exploring Galileo's future - and beyond

GMV will develop the future Galileo Second Generation capabilities

Topcon further expands MC-X Platform with all-new GNSS Option

TECH SPACE
Ex-US Marine accused of helping China was lured to Australia: lawyer

Slovakia to donate 13 MiG-29 fighter jets to Ukraine

US calls on Russia to operate military aircraft safely

Poland and Slovakia to transfer MiG-29 planes to Ukraine; W.House still opposes move

TECH SPACE
Beyond Gravity's Lynx computer takes data processing to new level

Coherent Logix launches 'HyperX: Midnight', world's most advanced space processor

Researchers create breakthrough spintronics manufacturing process that could revolutionize the electronics industry

Brain cells inspire new computer components

TECH SPACE
Earth Map and users work together for an eco-friendly world

Intelsat to operate air pollution monitoring space instrument

How heat flow affects the Earth's magnetic field

Warming makes droughts, extreme wet events more frequent, intense

TECH SPACE
Unwanted visitor ruins spring break in Florida - toxic algae

Report: Only six countries met 'healthy' air quality standards in 2022

Ohio sues Norfolk Southern over toxic derailment

Smog a major buzzkill for insect mating

Subscribe Free To Our Daily Newsletters




The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.