Space Industry and Business News  
Stopping Atoms

These important advances had limited use because they only applied to atoms with 'closed two-level transition', excluding important elements such as hydrogen, iron, nickel and cobalt. In contrast, nearly all elements and a wide range of molecules are affected by magnetic forces, or are paramagnetic, which means that this latest research has much wider applicability.
by Staff Writers
Austin TX (SPX) Oct 04, 2007
With atoms and molecules in a gas moving at thousands of kilometres per hour, physicists have long sought a way to slow them down to a few kilometres per hour to trap them. A paper, published today in the Institute of Physics' New Journal of Physics, demonstrates how a group of physicists from The University of Texas at Austin, US, have found a way to slow down, stop and explore a much wider range of atoms than ever before.

Inspired by the coilgun that was developed by the University's Center for Electromechanics, the group has developed an "atomic coilgun" that slows and gradually stops atoms with a sequence of pulsed magnetic fields.

Dr. Mark Raizen and his colleagues in Texas ultimately plan on using the gun to trap atomic hydrogen, which he said has been the Rosetta Stone of physics for many years and is the simplest and most abundant atom in the periodic table.

Work on slowing and stopping atoms has been at the forefront of advancement in physics for some time. In 1997, there were three joint-winners for the Nobel Prize in Physics for their combined contribution to laser cooling - a method using laser light to cool gases and keep atoms floating or captured in "atom traps".

These important advances had limited use because they only applied to atoms with 'closed two-level transition', excluding important elements such as hydrogen, iron, nickel and cobalt. In contrast, nearly all elements and a wide range of molecules are affected by magnetic forces, or are paramagnetic, which means that this latest research has much wider applicability.

Professor Raizen said, "Of particular importance are the doors being opened for our understanding of hydrogen. Precision spectroscopy of hydrogen's isotopes, deuterium and tritium, continues to be of great interest to both atomic and nuclear physics. Further study of tritium, as the simplest radioactive element, also serves as an ideal system for the study of Beta decay. "

Having successfully designed and used an 18-coil device to slow a supersonic beam of metastable neon atoms, the team is now developing a 64-stage device to further slow and stop atoms.

Related Links
Institute of Physics
Understanding Time and Space



Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News


Physicists Establish Spooky Quantum Communication
Ann Arbor MI (SPX) Oct 02, 2007
Physicists at the University of Michigan have coaxed two separate atoms to communicate with a sort of quantum intuition that Albert Einstein called "spooky." In doing so, the researchers have made an advance toward super-fast quantum computing. The research could also be a building block for a quantum internet. Scientists used light to establish what's called "entanglement" between two atoms, which were trapped a meter apart in separate enclosures (think of entangling like controlling the outcome of one coin flip with the outcome of a separate coin flip).







  • US cities' Wi-Fi dreams fading fast
  • Digital Dandelions: The Flowering Of Network Research
  • Researchers Aim To Make Internet Bandwidth A Global Currency
  • Controlling Bandwidth In The Clouds

  • Ariane 5 Cleared For Intelsat 11 And Optus D2 Mission
  • Pratt And Whitney Rocketdyne's RS-27A Powers New-Gen Imaging Satellite To Orbit
  • United Launch Alliance Launches 75th Consecutive Delta II On USAF 60th Anniversary
  • Russian Space Launch Vehicle Firing Tests Set For 2008

  • MEPs seek limits on aircraft emissions by 2010
  • Aircraft And Automobiles Thrive In Hurricane-Force Winds At Lockheed Martin
  • New Delft Material Concept For Aircraft Wings Could Save Billions
  • Cathay Pacific chief hits out at anti-aviation critics

  • First Class Of Airmen Train For Wideband Global SATCOM
  • Australia To Join With United States In Defence Global Satellite Communications Capability
  • Boeing Supports New USAF GPS Ground Control System
  • China's military tests sophisticated real-time data system

  • Foton-M3 Experiments Return To Earth
  • Radio Wave Cooling Offers New Twist On Laser Cooling
  • SSC Communication System Flys On Russian Capsule Foton
  • Engineers Rescue Aging Satellites And Save Millions

  • Analysis: Sulick new head spy for CIA
  • Raytheon Names Dr. Thomas Kennedy VP Tactical Airborne Systems
  • Northrop Grumman Appoints James Myers VP And GM Of Navigation Systems Division
  • Senior Official Of Energia Space Appointed President

  • Successful Image Taking By The High Definition Television
  • Boeing Launches WorldView-1 Earth-Imaging Satellite
  • New Faraway Sensors Warn Of Emerging Hurricane's Strength
  • Key Sensor For Northrop Grumman NPOESS Program Passes Critical Structural Test

  • New York taxi cabs sound the horn for second strike
  • EU deadlocked over funding for Galileo satnav project
  • EU plans for funding Galileo satnav system already hitting snags
  • Galileo GPS Network Hit By More Delays

  • The content herein, unless otherwise known to be public domain, are Copyright Space.TV Corporation. AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space.TV Corp on any Web page published or hosted by Space.TV Corp. Privacy Statement