Space Industry and Business News  
ENERGY TECH
Steering a fusion plasma toward stability
by Staff Writers
Kyoto, Japan (SPX) Oct 28, 2016


Stability map of fusion plasma in NSTX. Blue is stable and red is unstable. As the plasma decreases collisionality and increases rotation in time it transitions into an unstable region. Image courtesy Princeton Plasma Physics Laboratory. For a larger version of this image please go here.

Plasmas in fusion-energy producing devices are gases heated to millions of degrees that can carry millions of amperes of current. These superhot plasmas must be kept away from material surfaces of the vacuum vessel that contains them by using strong magnetic fields.

When the gas becomes unstable it can touch the chambers' walls, quickly cooling the plasma and disrupting fusion reactions. Such disruption could potentially harm the walls of future fusion-producing devices. Drs. Jack Berkery and Steve Sabbagh from Columbia University, who work at the U.S. Department of Energy's Princeton Plasma Physics Laboratory (PPPL), have developed a potential way to avoid these instabilities.

Fusion scientists previously thought that making the plasma rotate would stabilize the plasma, but Sabbagh and Berkery discovered that there is a more complicated connection between rotation and stability.

Some plasmas can become unstable when they rotate too fast, while others can maintain stability at lower rotation rates. When plasma rotation is kept in a favorable range, the charged plasma particles bouncing back and forth in the magnetic field can actually steal some of the energy from the rotational motion, which helps stabilize the plasma.

A similar stability condition applies to the frequency with which particles collide and bounce off one another, a property termed their collisionality. Berkery and Sabbagh found that reduced collisionality, as will be found in future fusion plasmas, does not necessarily lead to reduced stability, overturning long-held beliefs on the effect of collisions on stability.

Using these ideas, the scientists developed a "stability map" that allows a plasma to be monitored in real-time- with 1/1000 of a second resolution- to determine whether it is stable and how close it is to being unstable.

If you know how fast the plasma is rotating and the collisionality, you can use the stability map to see if the plasma is stable, as shown (Figure 1) for an experiment at the National Spherical Torus Experiment at PPPL.

The red colored areas are unstable, and the blue areas are stable. As the plasma evolves in time, indicated by the arrows on the map, its collisionality decreases and its rotation increases.

These changes lead the plasma to become unstable, and confinement of the plasma is lost, disrupting the fusion reaction. Controlling the rotation based on the stability map may allow steering the plasma back to a stable region, thereby avoiding disruption of the fusion reaction.

Abstract Y12.00005: Resistive Wall Mode Stability Forecasting in NSTX and NSTX-U


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
American Physical Society
Powering The World in the 21st Century at Energy-Daily.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
ENERGY TECH
Gamma ray camera offers new view on ultra-high energy electrons in plasma
Kyoto, Japan (SPX) Oct 28, 2016
Researchers at General Atomics (GA) have invented a new kind of gamma ray camera that can image beams of energetic electrons inside ultra-hot fusion plasma. The device is used in ongoing global research that is developing fusion into a new clean energy source. Turning fusion fuel into extractable energy requires it to be hotter than the center of the sun, hence in the plasma state. I ... read more


ENERGY TECH
You can now print your own 3D model of the universe

Spacecraft operation for the next generation

Terma radar for Royal Malaysian Navy

Space-based droplet dynamics lessons

ENERGY TECH
Lockheed Martin gets $92 million military satellite contract modification

Russia develops new satellite communication system for military use

Arizona aerospace company wins $19M Navy satellite contract

Canada defence dept selects Newtec for first DVB-S2X Airborne Modem

ENERGY TECH
Vega And Gokturk-1A are present for next Arianespace lightweight mission

Russia to face strong competition from China in space launch market

Antares Rides Again

Four Galileo satellites are "topped off" for Arianespace's milestone Ariane 5 launch from the Spaceport

ENERGY TECH
No GPS, no problem: Next-generation navigation

Australia's coordinates out by more than 1.5 metres: scientist

US Air Force awards Lockheed Martin $395M Contract for two GPS 3 satellites

SMC exercises contract options to procure two additional GPS III satellites

ENERGY TECH
Russian Helicopters to build training center in Peru

Raytheon to produce T-100 trainer in Mississippi

U.S. Navy's King Stallion helicopter completes operational testing

Lockheed Martin receives two F-22 Raptor contract modifications

ENERGY TECH
Making silicon-germanium core fibers a reality

A new class of materials could realize quantum computers

Flexible optical design method for superconducting nanowire single-photon detectors

Exploring defects in nanoscale devices for possible quantum computing applications

ENERGY TECH
Hosted Payloads Offers Remedy for Looming Air Force Weather Forecasting Gap

It's what underneath that counts

Studies offer new glimpse of melting under Antarctic glaciers

NASA satellite sees sulfur dioxide diffuse across northern Iraq

ENERGY TECH
Researchers invent 'perfect' soap molecule that is better for the environment

300 million children breathe heavily toxic air: UNICEF

UBC study finds optimal walking and cycling speeds to reduce air pollution inhalation

India capital chokes on toxic smog after Diwali









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.