Space Industry and Business News  
Stanford's Nanowire Battery Holds 10 Times The Charge Of Existing Ones

Photos taken by a scanning electron microscope of silicon nanowires before (left) and after (right) absorbing lithium. Both photos were taken at the same magnification. Courtesy Nature Nanotechnology
by Staff Writers
Stanford CA (SPX) Jan 03, 2008
Stanford researchers have found a way to use silicon nanowires to reinvent the rechargeable lithium-ion batteries that power laptops, iPods, video cameras, cell phones, and countless other devices. The new version, developed through research led by Yi Cui, assistant professor of materials science and engineering, produces 10 times the amount of electricity of existing lithium-ion, known as Li-ion, batteries.

A laptop that now runs on battery for two hours could operate for 20 hours, a boon to ocean-hopping business travelers. "It's not a small improvement," Cui said. "It's a revolutionary development."

The breakthrough is described in a paper, "High-performance lithium battery anodes using silicon nanowires," published online Dec. 16 in Nature Nanotechnology, written by Cui, his graduate chemistry student Candace Chan and five others.

The greatly expanded storage capacity could make Li-ion batteries attractive to electric car manufacturers. Cui suggested that they could also be used in homes or offices to store electricity generated by rooftop solar panels.

"Given the mature infrastructure behind silicon, this new technology can be pushed to real life quickly," Cui said.

The electrical storage capacity of a Li-ion battery is limited by how much lithium can be held in the battery's anode, which is typically made of carbon. Silicon has a much higher capacity than carbon, but also has a drawback.

Silicon placed in a battery swells as it absorbs positively charged lithium atoms during charging, then shrinks during use (i.e., when playing your iPod) as the lithium is drawn out of the silicon. This expand/shrink cycle typically causes the silicon (often in the form of particles or a thin film) to pulverize, degrading the performance of the battery.

Cui's battery gets around this problem with nanotechnology. The lithium is stored in a forest of tiny silicon nanowires, each with a diameter one-thousandth the thickness of a sheet of paper. The nanowires inflate four times their normal size as they soak up lithium. But, unlike other silicon shapes, they do not fracture.

Research on silicon in batteries began three decades ago. Chan explained: "The people kind of gave up on it because the capacity wasn't high enough and the cycle life wasn't good enough. And it was just because of the shape they were using. It was just too big, and they couldn't undergo the volume changes."

Then, along came silicon nanowires. "We just kind of put them together," Chan said.

For their experiments, Chan grew the nanowires on a stainless steel substrate, providing an excellent electrical connection. "It was a fantastic moment when Candace told me it was working," Cui said.

Cui said that a patent application has been filed. He is considering formation of a company or an agreement with a battery manufacturer. Manufacturing the nanowire batteries would require "one or two different steps, but the process can certainly be scaled up," he added. "It's a well understood process."

Related Links
Stanford
Nano Technology News From SpaceMart.com
Computer Chip Architecture, Technology and Manufacture



Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News


New Property Found In Ancient Mineral Lodestone
Houston TX (SPX) Dec 18, 2007
Using the latest methods for nanofabrication, a team led by Rice University physicists has discovered a surprising new electronic property in one of the earliest-known and most-studied magnetic minerals on Earth -- lodestone, also known as magnetite. By changing the voltage in their experiment, researchers were able to get magnetite at temperatures colder than minus 250 degrees Fahrenheit to revert from an insulator to a conductor.







  • Taiwan handheld device shipments to surge: consultancy
  • Industry Leaders Announce Open Platform For Mobile Devices
  • EU nations endorse standard system for mobile TV
  • Beyond Books: Virginia Tech Libraries In The Digital Age

  • Ariane 5 Wraps Up 2007 With Its Sixth Dual-Satellite Launch
  • Ariane 5 rockets puts Africa's first satellite into space
  • Sixth Ariane 5 Mission Of 2007 Set For December 20 Launch
  • Lightning Protection For The Next Generation Spacecraft

  • China's rolls out first home-made commercial jet
  • Dutch cops to ditch helicopters for airships in green bid: agency
  • EU agrees curbs on airline emissions from 2012
  • Airbus close to sale of four factories: report

  • Boeing To Build A Sixth Wideband Global SATCOM Satellite
  • Northrop Grumman And L-3 To Work Together In Bid For US Navy's EPX Aircraft
  • Raytheon Technology Receives High Marks At Coalition Warrior Interoperability Demonstration
  • Northrop Grumman Develops World's Fastest Transistor To Support Military's Need For Higher Frequency And Bandwidth

  • Radar Equipment From EADS To Be Deployed On TanDEM-X Satellite
  • Clark School Researchers Develop Two-Dimensional Invisibility Cloak
  • Top 10 Advances In Materials Science In The Last 50 Years
  • ATK Extendible Support Structure Operates Successfully on the RADARSAT-2 Mission

  • Iridium Satellite Appoints Leader For NEXT Development
  • Boeing Names Darryl Davis To Lead Advanced Systems For Integrated Defense Systems
  • Northrop Grumman Names John Landon VP Of Missiles, Technology And Space Programs
  • Dr Mary Cleave Appointed To Board Of Directors Of Sigma Space

  • ISRO To Launch Carto-2A Satellite In January 2008
  • Outside View: Arctic satellite balance
  • Lockheed Martin Awarded Contract For GOES-R Geostationary Lightning Mapper
  • Study Shows Urban Sprawl Continues To Gobble Up Land

  • Pioneering Galileo Satellite Begins Third Year In Orbit
  • New Glonass Satellites Due To Operate For Seven Years
  • Glonass For Cars Shown To Putin And Security Council
  • ITT Delivers New GPS Payload To Lockheed Martin For Satellite Integration

  • The content herein, unless otherwise known to be public domain, are Copyright Space.TV Corporation. AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space.TV Corp on any Web page published or hosted by Space.TV Corp. Privacy Statement