Space Industry and Business News  
CHIP TECH
Stable quantum bits can be made from complex molecules
by Staff Writers
London, UK (SPX) Nov 14, 2016


An integrated circuit shows the inclusion of molecular spin qubits for the implementation of entangling quantum gates. Image courtesy Dr. Christopher Muryn. For a larger version of this image please go here.

Quantum computing is about to get more complex. Researchers have evidence that large molecules made of nickel and chromium can store and process information in the same way bytes do for digital computers. The researchers present algorithms proving it's possible to use supramolecular chemistry to connect "qubits," the basic units for quantum information processing, in Chem on November 10. This approach would generate several kinds of stable qubits that could be connected together into structures called "two-qubit gates."

"We have shown that the chemistry is achievable for bringing together two-qubit gates," says senior author Richard Winpenny, Head of the University of Manchester School of Chemistry. "The molecules can be made and the two-qubit gates assembled. The next step is to show that these two-qubit gates work."

Traditional computers organize and store information in the form of bits, which are written out in long chains of 0s and 1s, whereas quantum computers use qubits, which can be 1, 0, or any superposition between those numbers at the same time, allowing researchers to do much more powerful computations. However, large assemblies of qubits that are stable enough to be applied to perform algorithms don't yet exist.

Winpenny and his collaborators address this problem in their algorithm designs, which combine large molecules to create both two qubits and a bridge between the units, called a quantum gate. These gates are held together through supramolecular chemistry. Studies of the gates show that the quantum information stored in the individual qubits is stored long enough to allow manipulations of the information and hence algorithms. The time information that can be stored is called the coherence time.

"Say you're in a bar and you're trying to bring two pints of beer back to your friends without spilling it. But the bar is filled with drunks who are singing, jumping around, and dancing. The coherence time is a measure of how far you can get the beer without spilling it," says Winpenny. "You want the bar to be very well behaved and very stationary so you can walk through the pub and get back to the table, just like we want the qubits to be stable long enough so we can store and manipulate information.

"The real problem seems to be whether we could put these qubits together at all. But we showed that connecting these individual qubits doesn't change the coherence times, so that part of the problem is solvable," adds Winpenny. "It's achievable to create multi-qubit gates, and we're hoping it inspires more scientists to move in that direction."

Research paper: "Swithable Interaction in Molecular Double Qubits"


Comment on this article using your Disqus, Facebook, Google or Twitter login.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Cell Press
Computer Chip Architecture, Technology and Manufacture
Nano Technology News From SpaceMart.com






Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
CHIP TECH
Researchers discover new method to dissipate heat in electronic devices
Riverside CA (SPX) Nov 14, 2016
Controlling the flow of heat through semiconductor materials is an important challenge in developing smaller and faster computer chips, high-performance solar panels, and better lasers and biomedical devices. For the first time, an international team of scientists led by a researcher at the University of California, Riverside has modified the energy spectrum of acoustic phonons - elemental ... read more


CHIP TECH
Scientists have 'scared away' microparticles with laser light

Study: Math scares everyone, even physicists

Exotic property of salty solutions discovered

Tiny magnifying glass reveals chemical bonds between atoms

CHIP TECH
Upgraded telecommunications network for Marines

Unfurlable mesh reflectors deploy on 5th MUOS satellite

Ultra Electronics, GigaSat becomes channel partner for Milspace comms in Indonesia

NATO contracts for satellite services

CHIP TECH
Russia to face strong competition from China in space launch market

Vega And Gokturk-1A are present for next Arianespace lightweight mission

Antares Rides Again

Four Galileo satellites are "topped off" for Arianespace's milestone Ariane 5 launch from the Spaceport

CHIP TECH
Flying the fantastic four

Russian Space Agency May Launch Up to 4 Glonass Navigation Satellites Next Year

Australian continent shifts with the seasons

Swarm reveals why satellites lose track

CHIP TECH
RUAG Australia selected for F-35 sustainment work

French court green-lights controversial Nantes airport

Leonardo-Finmeccanica demonstrates C-27J capabilities

First woman to fly China's J-10 fighter killed in crash

CHIP TECH
Breakthrough in the quantum transfer of information between matter and light

The thinnest photodetector in the world

Stable quantum bits can be made from complex molecules

Researchers discover new method to dissipate heat in electronic devices

CHIP TECH
NASA finds unusual origins of high-energy electrons

Spaceflight Industries Reveals First Images from BlackSky Pathfinder-1

ULA launches latest DigitalGlobe commercial earth observation satellite WorldView-4

A Box of 'Black Magic' to Study Earth from Space

CHIP TECH
Study demonstrates potential support for ban on microbeads in cosmetics

New toxicology test could improve USDA, EPA chemical screening

Heavy pollution shuts schools in Iran's capital

As mercury emissions drop, so do concentrations in tuna









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.