Space Industry and Business News  
TECH SPACE
Squid could provide an eco-friendly alternative to plastics
by Staff Writers
Washington DC (SPX) Feb 28, 2019

illustration only

The remarkable properties of a recently-discovered squid protein could revolutionize materials in a way that would be unattainable with conventional plastic, finds a review published in Frontiers in Chemistry.

Originating in the ringed teeth of a squid's predatory arms, this protein can be processed into fibers and films with applications ranging from 'smart' clothes for health monitoring, to self-healing recyclable fabrics that reduce microplastic pollution. Materials made from this protein are eco-friendly and biodegradable, with sustainable large-scale production achieved using laboratory culture methods.

"Squid proteins can be used to produce next generation materials for an array of fields including energy and biomedicine, as well as the security and defense sector," says lead author Melik Demirel, Lloyd and Dorothy Foehr Huck Endowed Chair in Biomimetic Materials, and Director of Center for Research on Advanced Fiber Technologies (CRAFT) at Penn State University, USA. "We reviewed the current knowledge on squid ring teeth-based materials, which are an excellent alternative to plastics because they are eco-friendly and environmentally sustainable."

Squid ring teeth are all-rounders
As humanity awakens to the aftermath of a 100-year party of plastic production, we are beginning to heed nature's warnings - and its solutions.

"Nature produces a variety of smart materials capable of environmental sensing, self-healing and exceptional mechanical function. These materials, or biopolymers, have unique physical properties that are not readily found in synthetic polymers like plastic. Importantly, biopolymers are sustainable and can be engineered to enhance their physical properties," explains Demirel.

The oceans, which have borne the brunt of plastic pollution, are at the center of the search for sustainable alternatives. A newly-discovered protein from squid ring teeth (SRT) - circular predatory appendages located on the suction cups of squid, used to strongly grasp prey - has gained interest because of its remarkable properties and sustainable production.

The elasticity, flexibility and strength of SRT-based materials, as well as their self-healing, optical, and thermal and electrical conducting properties, can be explained by the variety of molecular arrangements they can adopt. SRT proteins are composed of building blocks arranged in such a way that micro-phase separation occurs.

This is a similar situation to oil and water but on a much smaller, nano-scale. The blocks cannot separate completely to produce two distinct layers, so instead molecular-level shapes are created, such as repeating cylindrical blocks, disordered tangles or ordered layers. The shapes formed dictate the property of the material and scientists have experimented with these to produce SRT-based products for a variety of uses.

In the textiles industry, SRT protein could address one of the main sources of microplastic pollution by providing an abrasion-resistant coating that reduces microfiber erosion in washing machines. Similarly, a self-healing SRT protein coating could increase the longevity and safety of damage-prone biochemical implants, as well as garments tailored for protection against chemical and biological warfare agents.

It is even possible to interleave multiple layers of SRT proteins with other compounds or technology, which could lead to the development of 'smart' clothes that can protect us from pollutants in the air while also keeping an eye on our health. The optical properties of SRT-based materials mean these clothes could also display information about our health or surroundings.

Flexible SRT-based photonic devices - components that create, manipulate or detect light, such as LEDs and optical displays, which are typically manufactured with hard materials like glass and quartz - are currently in development.

"SRT photonics are biocompatible and biodegradable, so could be used to make not only wearable health monitors but also implantable devices for biosensing and biodetection," adds Demirel.

No squid was harmed in the making of this film
One of the main advantages of SRT-based materials over synthetic materials and plastics made from fossil fuels are its eco-credentials. SRT proteins are cheaply and easily produced from renewable resources and researchers have found a way of producing it without catching a squid. "We don't want to deplete natural squid resources and hence we produce these proteins in genetically modified bacteria. The process is based on fermentation and uses sugar, water, and oxygen to produce biopolymers," explains Demirel.

It is hoped that the SRT-based prototypes will soon become available more widely, but more development is needed.

Demirel explains, "Scaling up these materials requires additional work. We are now working on the processing technology of these materials so that we can make them available in industrial manufacturing processes."

Research paper


Related Links
Frontiers
Space Technology News - Applications and Research


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


TECH SPACE
Avoiding the crack of doom
Washington DC (SPX) Feb 26, 2019
Just as a journey of 1,000 miles begins with a single step, the deformations and fractures that cause catastrophic failure in materials begin with a few molecules torn out of place. This in turn leads to a cascade of damage at increasingly larger scales, culminating in total mechanical breakdown. That process is of urgent interest to researchers studying how to build high-strength composite materials for critical components ranging from airplane wings and wind-turbine blades to artificial knee joi ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TECH SPACE
Egypt to host Huawei's first MENA cloud platform: Cairo

Avoiding the crack of doom

Captured carbon dioxide converts into oxalic acid to process rare earth elements

NASA set to demonstrate x-ray communications in space

TECH SPACE
Raytheon awarded $406M for Army aircraft radio system

Lockheed Martin to develop cyber electronic warfare pod for UAVs

Britain to spend $1.3M for satellite antennas in light of Brexit

Reflectarray Antenna offers high performance in small package: DARPA

TECH SPACE
TECH SPACE
Angry Norway says Russia jamming GPS signals again

Kite-blown Antarctic explorers make most southerly Galileo positioning fix

Magnetic north pole leaves Canada, on fast new path

NOAA releases early update for World Magnetic Model

TECH SPACE
Boeing tapped for F-15E warning system development, testing

Bell Boeing signs $10.7M contract for V-22 Osprey radar upgrades

Boeing's EA-18G fighter plane under consideration by Finnish military

Back to black: Cathay says it has ended two years of losses

TECH SPACE
Understanding high efficiency of deep ultraviolet LEDs

Terahertz wireless makes big strides in paving the way to technological singularity

Spintronics by 'straintronics'

Running an LED in reverse could cool future computers

TECH SPACE
KBRwyle Awarded $19M to Perform Flight Ops for USGS Satellite

Earth's atmosphere stretches out to the Moon - and beyond

exactEarth's real-time maritime tracking system now fully-deployed

Astronaut photography benefiting the planet

TECH SPACE
Italy's polluted Po Valley gasps for fresh air

Plastic found in deepest ocean animals

Nearly 50% of transport pollution deaths linked to diesel: study

Innovative nanocoating technology harnesses sunlight to degrade microplastics









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.