Space Industry and Business News  
CHIP TECH
Spintronics by 'straintronics'
by Staff Writers
Berlin, Germany (SPX) Feb 15, 2019

The cones represents the magnetization of the nanoparticles. In the absence of electric field (strain-free state) the size and separation between particles leads to a random orientation of their magnetization, known as superparamagnetism

Switching magnetic domains in magnetic memories requires normally magnetic fields which are generated by electrical currents, hence requiring large amounts of electrical power. Now, teams from France, Spain and Germany have demonstrated the feasibility of another approach at the nanoscale: "We can induce magnetic order on a small region of our sample by employing a small electric field instead of using magnetic fields", Dr. Sergio Valencia, HZB, points out.

The samples consist of a wedge-shaped polycrystalline iron thin film deposited on top of a BaTiO3 substrate. BaTiO3 is a well-known ferroelectric and ferroelastic material: An electric field is able to distort the BaTiO3 lattice and induce mechanical strain. Analysis by electron microscopy revealed that the iron film consists of tiny nanograins (diameter 2,5 nm).

At its thin end, the iron film is less than 0,5 nm thick, allowing for "low dimensionality" of the nanograins. Given their small size, the magnetic moments of the iron nanograins are disordered with respect to each other, this state is known as superparamagnetism.

At the X-PEEM-Beamline at BESSY II, the scientists analysed what happens with the magnetic order of this nanograins under a small electric field. "With X-PEEM we can map the magnetic order of the iron grains on a microscopic level and observe how their orientation changes while in-situ applying an electric field", Dr. Ashima Arora explains, who did most of the experiments during her PhD Thesis.

Their results show: the electrical field induced a strain on BaTiO3, this strain was transmitted to the iron nanograins on top of it and formerly superparamagnetic regions of the sample switched to a new state. In this new state the magnetic moments of the iron grains are all aligned along the same direction, i.e. a collective long-range ferromagnetic order known as superferromagnetism.

The experiments were performed at a temperature slightly above room temperature. "This lets us hope that the phenomenon can be used for the design of new composite materials (consisting of ferroelectric and magnetic nanoparticles) for low-power spin-based storage and logic architectures operating at ambient conditions", Valencia says.

Controlling nanoscale magnetic bits in magnetic random access memory devices by electric field induced strain alone, is known also as straintronics. It could offer a new, scalable, fast and energy efficient alternative to nowadays magnetic memories.

Research paper


Related Links
Helmholtz-Zentrum Berlin fur Materialien und Energie
Computer Chip Architecture, Technology and Manufacture
Nano Technology News From SpaceMart.com


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


CHIP TECH
Boosting solid state chemical reactions
Sapporo, Japan (SPX) Feb 12, 2019
Adding olefin enables efficient solvent-free cross-coupling reactions, leading to environmentally friendly syntheses of a wide range of organic materials. A cross coupling reaction is typically performed in an organic solvent and leads to the production of a large amount of solvent waste, which is often harmful to the environment. A new strategy developed by Hokkaido University researchers in Japan opens the door for more environmentally friendly solvent-free solid-state cross coupling proce ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

CHIP TECH
Lefty or righty molecules lend a hand to material structures

Architecting a new breed of high performance computing for virtual training environments

Using artificial intelligence to engineer materials' properties

Blockchain provides security, traceability for smart manufacturing

CHIP TECH
Raytheon awarded $406M for Army aircraft radio system

Lockheed Martin to develop cyber electronic warfare pod for UAVs

Britain to spend $1.3M for satellite antennas in light of Brexit

Reflectarray Antenna offers high performance in small package: DARPA

CHIP TECH
CHIP TECH
Kite-blown Antarctic explorers make most southerly Galileo positioning fix

Magnetic north pole leaves Canada, on fast new path

NOAA releases early update for World Magnetic Model

BeiDou achieves real-time transmission of deep-sea data

CHIP TECH
Spain joins France, Germany on new combat fighter

Bell awarded $240M for 12 Viper helicopters for Bahrain

Airbnb eyes the sky with hire of aviation exec

Brazil's Embraer sells 12 military aircraft to Nigeria

CHIP TECH
Penn engineers develop room temperature, two-dimensional platform for quantum technology

Boosting solid state chemical reactions

Quantum strangeness gives rise to new electronics

Life on the edge in the quantum world

CHIP TECH
Open-access sat data allows tracking of seasonal population movements

Science key to taking the pulse of our planet

New scale to characterize strength and impacts of atmospheric river storms

Earth-i Updates Satellite Map of Queensland, Australia

CHIP TECH
NUS marine scientists find toxic bacteria on microplastics retrieved from tropical waters

Light pollution affects most of the planet's key wildlife areas

Holloman Air Force Base receives notice for groundwater contamination

Green water-purification system works without heavy metals or corrosive chemicals









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.