Subscribe free to our newsletters via your
. Space Industry and Business News .




ENERGY TECH
Smart glass
by Staff Writers
Cambridge, UK (SPX) Feb 26, 2014


File image.

Porous films, which use similar properties to those seen in moth eyes in combination with nanoparticles, are being developed into robust, self-cleaning antireflective coatings for use on both plastic and glass. Details of the coatings, which were developed by researchers at the University of Cambridge, were recently outlined in the journal Nano Letters.

Antireflective coatings need to refract as little light as possible in order to be effective, but it is extremely difficult to produce them as a single layer. Over the past decade, researchers have developed distributed coatings, which resolve this by mimicking the structure of moth eyes.

The antireflective properties of moth eyes come not from a single layer, but from a hexagonal pattern of tiny bumps. The spaces between these bumps are so small that incoming beams of light see the eye's surface as a single layer, essentially removing the interface between the air and the surface, allowing moths to see at night and be less visible to predators.

The problem with synthetic versions of moth eye coatings is that the tiny spaces which make the coating antireflective in the first place can very quickly become clogged with dirt, which cause the antireflective effect to be lost.

Professor Ulli Steiner and colleagues from the Cavendish Laboratory have developed a new coating which is both antireflective and self-cleaning. In order to develop it, Professor Steiner and his co-inventors came up with a strategy to make layers of plastic with very well-defined small pores, similar to moth eyes. But by making the pores larger than they are in most other types of moth eye coatings, they were able to incorporate titanium dioxide nanocrystals into the structure.

These nanocrystals are photocatalytic - when light falls on them, they start to break down the dirt clogging the pores, until all that is left is carbon dioxide, and water which evaporates off the surface, rendering the material self-cleaning.

In early tests of the material, the titanium dioxide nanoparticles were able to break down all of the oils contained in a fingerprint within 90 minutes. The coating is capable of breaking down most of the standard hydrocarbons that clog most porous antireflective coatings.

The breakthrough research is the first time that these nanoparticles have been effectively incorporated into antireflective coatings, raising the possibility of antireflective, self-cleaning glass or plastic.

The coating adheres to the substrate through sol-gel chemistry, resulting in a durable bond and a coating which will not flake off.

While the material is currently only suitable for outdoor applications as it requires ultraviolet light for photocatalysis to occur, the team are planning more tests to see if the material could be adapted in future for indoor light, which would open up a wide range of potential applications.

The team are currently looking at applications in building glass and solar cells, as much of the sunlight solar cells are meant to capture and convert to energy simply bounces off the surface, and current antireflective coatings become easily clogged with dirt.

"When generating energy from solar cells, you have to fight for every percentage gain in efficiency," said Professor Steiner. "The coating we've developed combines two interesting scientific principles, and could increase the amount of light getting into the solar cells."

Cambridge Enterprise, the University's commercialisation arm, is currently looking for commercial partners to help develop this material.

.


Related Links
University of Cambridge
Powering The World in the 21st Century at Energy-Daily.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








ENERGY TECH
New, inexpensive production materials boost promise of hydrogen fuel
Madison WI (SPX) Feb 24, 2014
Generating electricity is not the only way to turn sunlight into energy we can use on demand. The sun can also drive reactions to create chemical fuels, such as hydrogen, that can in turn power cars, trucks and trains. The trouble with solar fuel production is the cost of producing the sun-capturing semiconductors and the catalysts to generate fuel. The most efficient materials are far too ... read more


ENERGY TECH
EIAST showcases DubaiSat-2 results, plans for KhalifaSat at space conference in Singapore

A New Way to Create Porous Materials

USAF reveals 'neighborhood watch' satellite program

UT Dallas-led team makes powerful muscles from fishing line and sewing thread

ENERGY TECH
New Wireless Tagging And Tracking Capability For Managing Sensitive Assets

Lockheed Martin Mobile "Network in a Box" Upgraded

ASC Signal Receives Multi-Antenna Contract for Kuwait Ministry of Information

US Marines Reach Milestone For New General Dynamics-built Aviation CCS

ENERGY TECH
'Mission of Firsts' Showcased New Range-Safety Technology at NASA Wallops

First Copernicus satellite at launch site

Arianespace to launch OPTSAT 3000 and VENuS satellites

Lighter engines a headache for satellite launcher Ariane

ENERGY TECH
Fifth Boeing GPS IIF Spacecraft Sends Initial Signals from Space

Russia to deploy up to 7 Glonass ground stations outside of national territory in 2014

Northrop Grumman Awarded U.S. Military Contract for Navigation Systems

Galileo works, and works well

ENERGY TECH
Lockheed Martin Receives US Army Apache Targeting and Pilotage System Sustainment Contract

Israeli arms dealers held over seized F-4 parts for Iran

Airbus wants money for Germany's scrapped Eurofighter order: report

Northrop Grumman Provides Inertial Navigation Products for TiltRotor Aircraft

ENERGY TECH
Controlling the Electronic and Magnetic Properties of Mott Thin Films

A Step Closer to a Photonic Future

Better cache management could improve chip performance, cut energy use

Magnetism and an Electric Field

ENERGY TECH
Counting Down to GPM

Sentinel-1 spreads its wings

Sharp-Eyed Proba-V Works Around The Clock

NASA Satellites See Arctic Surface Darkening Faster

ENERGY TECH
China smog drives masks out of stock

Haze heavier around Beijing

China's Xi breathes Beijing smog on surprise outing

Bulgaria chokes on air pollution fuelled by poverty




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.