Space Industry and Business News  
ROBO SPACE
Smart computers
by Staff Writers
Freiburg, Germany (SPX) Aug 21, 2017


In order to achieve better brain signal transmission quality, the researchers apply contact gel. Credit Photo: Michael Veit

Filtering information for search engines, acting as an opponent during a board game or recognizing images: Artificial intelligence has far outpaced human intelligence in certain tasks. Several groups from the Freiburg excellence cluster BrainLinks-BrainTools led by neuroscientist private lecturer Dr. Tonio Ball are showing how ideas from computer science could revolutionize brain research.

In the scientific journal Human Brain Mapping they illustrate how a self-learning algorithm decodes human brain signals that were measured by an electroencephalogram (EEG). It included performed movements, but also hand and foot movements that were merely thought or an imaginary rotation of objects.

Even though the algorithm was not given any characteristics ahead of time, it works as quickly and precisely as traditional systems that have been created to solve certain tasks based on predetermined brain signal characteristics, which are therefore not appropriate for every situation.

The demand for such diverse intersections between man and machine is huge: At the University Hospital Freiburg, for instance, it could be used for early detection of epileptic seizures. It could also be used to improve communication possibilities for severely paralyzed patients or an automatic neurological diagnosis.

"Our software is based on brain-inspired models that have proven to be most helpful to decode various natural signals such as phonetic sounds," says computer scientist Robin Tibor Schirrmeister. The researcher is using it to rewrite methods that the team has used for decoding EEG data: So-called artificial neural networks are the heart of the current project at BrainLinks-BrainTools.

"The great thing about the program is we needn't predetermine any characteristics. The information is processed layer for layer, that is in multiple steps with the help of a non-linear function. The system learns to recognize and differentiate between certain behavioral patterns from various movements as it goes along," explains Schirrmeister. The model is based on the connections between nerve cells in the human body in which electric signals from synapses are directed from cellular protuberances to the cell's core and back again.

"Theories have been in circulation for decades, but it wasn't until the emergence of today's computer processing power that the model has become feasible," comments Schirrmeister.

Customarily, the model's precision improves with a large number of processing layers. Up to 31 were used during the study, otherwise known as "Deep Learning".

Up until now, it had been problematic to interpret the network's circuitry after the learning process had been completed. All algorithmic processes take place in the background and are invisible. That is why the researchers developed the software to create cards from which they could understand the decoding decisions. The researchers can insert new datasets into the system at any time.

"Unlike the old method, we are now able to go directly to the raw signals that the EEG records from the brain. Our system is as precise, if not better, than the old one," says head investigator Tonio Ball, summarizing the study's research contribution.

The technology's potential has yet to be exhausted - together with his team, the researcher would like to further pursue its development: "Our vision for the future includes self-learning algorithms that can reliably and quickly recognize the user's various intentions based on their brain signals. In addition, such algorithms could assist neurological diagnoses."

Schirrmeister RT, Springenberg JT, Fiederer LDJ, Glasstetter M, Eggensperger K, Tangermann, M, Hutter F, Burgard W, Ball T; Deep learning with convolutional neural networks for EEG decoding and visualization. 2017 Hum Brain Mapp. DOI: 10.1002/hbm.23730.

ROBO SPACE
Northrop Grumman to demonstrate autonomous networked unmanned vehicles
Washington (UPI) Aug 14, 2017
Northrop Grumman will demonstrate autonomous unmanned undersea and unmanned surface vehicles at the Advanced Naval Technology Exercise at the Naval Surface Warfare Center this week. The demonstration will coordinate multiple undersea and surface autonomous vehicles alongside an aerial vehicle to collect targeting data for enemy seabed infrastructure, followed by an undersea vehicle enga ... read more

Related Links
University of Freiburg
All about the robots on Earth and beyond!


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


Comment using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

ROBO SPACE
Researchers use vacuum for hands-free patterning of liquid metal

Surprise discovery in the search for energy efficient information storage

NASA protects its super heroes from space weather

Cosmonauts launch 3D-printed satellite from space station

ROBO SPACE
82nd Airborne tests in-flight communication system for paratroopers

North Dakota UAS Training Center Depends on IGC Satellite Connectivity

Envistacom wins $10M Army communications contract

New SQUID-based detector opens up new fields of study with new level of sensitivity

ROBO SPACE
ROBO SPACE
IAI, Honeywell Aerospace team for GPS anti-jam system

Harris delivers navigation package for third GPS III satellite

Lockheed Martin Begins Modernizing Receivers for U.S. Air Force's GPS Signal Monitoring Stations

Russia, China to Set Up Pilot Zone to Test National Navigation Systems

ROBO SPACE
France and Germany announce new joint fighter program

Honeywell, Pratt and Whitney contracted by Air Force for power system support

India clears $650 mn Boeing army chopper deal: defence sources

US Army chopper disappears on Hawaii training mission

ROBO SPACE
Single molecules can work as reproducible transistors - at room temperature

New ultrathin semiconductor materials exceed some of silicon's 'secret' powers

Single-photon emitter has promise for quantum info-processing

A semiconductor that can beat the heat

ROBO SPACE
Nickel key to Earth's magnetic field, research shows

Identifying individual atmospheric equatorial waves from a total flow field

NASA-led airborne mission studies storm intensification in northern hemisphere

Ozone treaty taking a bite out of US greenhouse gas emissions

ROBO SPACE
Cambodia bans overseas exports of coastal sand

Treaty to curb mercury exposure takes effect

Probiotics help poplar trees clean up toxins in Superfund sites

Canada looking to add environmental protections to NAFTA









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.