Subscribe free to our newsletters via your
. Space Industry and Business News .




ROBO SPACE
Small, origami-inspired pop-up robots function autonomously
by Staff Writers
Washington DC (SPX) Aug 11, 2014


This image depicts a profile view of the self-folding crawling robot in three stages. Image courtesy Seth Kroll, Wyss Institute.

Inspired by the traditional Japanese art form of Origami or "folding paper," researchers have developed a way to coax flat sheets of composite materials to self-fold into complex robots that crawl and turn.

"We demonstrated this process by building a robot that folds itself and walks away without human assistance," said Sam Felton, a Ph.D. candidate at Harvard University's School of Engineering and Applied Sciences and the Wyss Institute for Biologically Inspired Engineering and the lead author of a new report in the 8 August issue of the journal Science .

In the experiment, the researchers' robot self-assembled from flat sheets of paper and shape memory polymers (which change shape when heated above 100 Celsius) into which they had embedded electronics.

The flat composite transformed into a dynamic, functional machine in about four minutes. It then crawled away at a speed of about 5.4 centimeters or over 2 inches, per second, and it also turned-all without human help. No previous self-folding approach has yielded a machine that can function without additional outside assistance.

This new approach, which is both efficient and versatile, allows researchers to quickly produce complex robots that are scalable to different sizes and are also very strong for their weight, the new study reports.

For the last decade, the team that worked on this approach has been looking at ways to increase the complexity of robotic devices. They started by building folding-based devices at very small scales. Despite inherent design challenges ( i.e., the skills required to fold such complex geometries), they realized the value of continuing, and creating robots at bigger, more traditional robot scales.

"Folding allows you to avoid the 'nuts and bolts' assembly approaches typically used for robots or other complex electromechanical devices and it allows you to integrate components (e.g., electronics, sensors, actuators) while flat," said Rob Wood, the Charles River Professor of Engineering and Applied Sciences Core Faculty Member at Harvard University's Wyss Institute for Biologically Inspired Engineering and the study's senior author.

Felton added that "traditional manufacturing requires expensive machinery, and 3D printing is too slow for mass production, but planar composites can be rapidly built with inexpensive tools like laser cutters and etch tanks, and then folded into functional machines. Such manufacturing methods would be ideal for producing 100-1000 units."

"These robots are inexpensive and [their] layered composites can be built faster than equivalent 3-D printed structures," Felton continued.

The researchers, who collaborated with colleagues at the Massachusetts Institute of Technology, created their robot by using parts and materials that are readily available, such as a shape-memory polymer and self-folding hinges.

The hinges feature embedded heating circuits that created the heat necessary to activate the folding. The placement of these hinges in the composite, and the order in which they are triggered create a fold pattern that determines the final shape of the 3-D structure, the study reports.

3-D design software that generated detailed crease patterns in the polymer material automated the folding process. It formed creases that became connected in cyclic folds, or a collection of creases.

"Cyclic folds are used by a software program called 'Origamizer' as building blocks to create any polyhedron," explained Felton. "We've discovered that we can [use this approach] to create a wide variety of structures and machines."

In this case, the stiffness and type of the folds raised the robot's body, which propelled the legs to angle downward.

Potential uses for these self-folding, functional machines include deployment or in a search-and-rescue scenarios where they could be activated to navigate small tunnels or spaces. "[They could be delivered] through a confined passageway, such as a collapsed building, after which they would assemble into their final form autonomously," said Marc Lavine, a senior editor at Science.

The fact that they could be shipped flat in large quantities, and then assembled once onsite, makes them especially valuable. Other examples of their use include deployment into space for various forms of exploration, IKEA-style furniture that assembles upon arrival, or for self-folding shelters that rapidly assemble in disaster zones.

Yet another promising application for this technology is rapid prototyping of new designs for tiny machines that are too small to be assembled by hand.

In a related report, Jesse Silverberg from Cornell University report how they, too, used origami-based engineering to design and build a new type of lightweight, ultra-tough programmable metamaterial.

The researchers explain that metamaterials are constructed out of medium-sized building blocks that are bigger than atoms, but much smaller than the structures they are used to construct and that "by adding structure at this intermediate size, previously unobtainable properties can be engineered with ease."

The researchers studied a specific type of zigzag folding pattern that has been used to efficiently pack solar panels for space missions. They used the pattern to create folded sheets, and then devised a way to structurally alter the sheets so that they could control their mechanical properties. This would allow them to create metamaterials with desirable properties, such as strength or stiffness.

"When incorporated into more complex devices, these materials will enable on-the-fly transformation of mechanical function," explained Silverberg.

"We envision combining these origami-inspired materials with computer-controlled actuators to build more complex machines, such as hardening shells, locked-in joints and deployable barriers; and ultimately, this transformer technology will revolutionize the way we think about materials, moving them beyond their current static form, and revealing more functionality than what originally meets the eye."

.


Related Links
American Association for the Advancement of Science
All about the robots on Earth and beyond!






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








ROBO SPACE
Robots to up-end the world of work, for good and bad
Washington (AFP) Aug 06, 2014
Robots and artificially intelligent devices will take over many jobs now done by people, and experts are divided as to whether their spread will do human society more good than harm. The Pew Research Center said experts see a growing role for self-driving cars, delivery drones, robotic workers, smartphone-based assistants and even algorithmic journalism by 2025. But they are divided on w ... read more


ROBO SPACE
Learning from origami to design new materials

BAE Systems touts its Artisan radar system

Association of satellite operators joins program for space safety

USN Moderates CubeSat RF Communications Standards Meeting

ROBO SPACE
ADS will bid for USAF order for commercial satellite bandwidth

RRC supports Navy's Satellite Communications Facility in Virginia

Communications system used in Afghanistan gets Northrop support

Fourth MUOS Communication Satellite Clears Launch-Simulation Test

ROBO SPACE
Ariane 5 is readied for Arianespace's September launch with MEASAT-3b and Optus 10

ATK Passes Critical Design Review for NASA's Space Launch System Booster

Russia to Decide on Future of Sea Launch Project by End of 2014

SpaceX launches AsiaSat8 into orbit via Falcon 9 rocket

ROBO SPACE
Galileo's initial two Full Operational Capability satellites are fueled for launch

Boeing GPS IIF satellite launched by Air Force

GPS-guided shell in full-rate production

Targeting device that helps reduce collateral damage tested by the Army

ROBO SPACE
Japan to test first homegrown stealth fighter jet: report

Airports plant prairie grass to prevent bird strikes

Asia's richest man targets aviation and Irish firm AWAS

The evolution of airplanes

ROBO SPACE
Pairing old technologies with new for next-generation electronic devices

Diamonds are a Quantum Computer's Best Friend

SyNAPSE Program Develops Advanced Brain-Inspired Chip

Tiny chip mimics brain, delivers supercomputer speed

ROBO SPACE
TechDemoSat-1 video from orbit captures spectacular view of Earth and a flypast of the launcher

Study of Aerosols Stands to Improve Climate Models

NASA's IceCube No Longer On Ice

New NASA Studies to Examine Climate/Vegetation Links

ROBO SPACE
Physicists create water tractor beam

Chemical leak at Mexican mine fouls water supply

The immediate aftermath of an oil spill

Toxic mine leak turns Mexico river orange




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.