Space Industry and Business News  
STELLAR CHEMISTRY
Single photons from a silicon chip
by Staff Writers
Dresden (SPX) Sep 16, 2020

Schematic representation of a single defect in a silicon wafer created by the implantation of carbon atoms, which emits single photons in the telecom O-band (wavelength range: 1260 to 1360 nanometers) coupled to an optical fiber.

Quantum technology holds great promise: Just a few years from now, quantum computers are expected to revolutionize database searches, AI systems, and computational simulations. Today already, quantum cryptography can guarantee absolutely secure data transfer, albeit with limitations.

The greatest possible compatibility with our current silicon-based electronics will be a key advantage. And that is precisely where physicists from the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) and TU Dresden have made remarkable progress: The team has designed a silicon-based light source to generate single photons that propagate well in glass fibers.

Quantum technology relies on the ability to control the behavior of quantum particles as precisely as possible, for example by locking individual atoms in magnetic traps or by sending individual light particles - called photons - through glass fibers.

The latter is the basis of quantum cryptography, a communication method that is, in principle, tap-proof: Any would-be data thief intercepting the photons unavoidably destroys their quantum properties. The senders and receivers of the message will notice that and can stop the compromised transmission in time.

This requires light sources that deliver single photons. Such systems already exist, especially based on diamonds, but they have one flaw: "These diamond sources can only generate photons at frequencies that are not suitable for fiber optic transmission," explains HZDR physicist Dr. Georgy Astakhov.

"Which is a significant limitation for practical use." So Astakhov and his team decided to use a different material - the tried and tested electronic base material silicon.

100,000 single photons per second
To make the material generate the infrared photons required for fiber optic communication, the experts subjected it to a special treatment, selectively shooting carbon into the silicon with an accelerator at the HZDR Ion Beam Center. This created what is called G-centers in the material - two adjacent carbon atoms coupled to a silicon atom forming a sort of artificial atom.

When radiated with red laser light, this artificial atom emits the desired infrared photons at a wavelength of 1.3 micrometers, a frequency excellently suited for fiber optic transmission. "Our prototype can produce 100,000 single photons per second," Astakhov reports.

"And it is stable. Even after several days of continuous operation, we haven't observed any deterioration." However, the system only works in extremely cold conditions - the physicists use liquid helium to cool it down to a temperature of minus 268 degrees Celsius.

"We were able to show for the first time that a silicon-based single-photon source is possible," Astakhov's colleague Dr. Yonder Berencen is happy to report. "This basically makes it possible to integrate such sources with other optical components on a chip."

Among other things, it would be of interest to couple the new light source with a resonator to solve the problem that infrared photons largely emerge from the source randomly. For use in quantum communication, however, it would be necessary to generate photons on demand.

Light source on a chip
This resonator could be tuned to exactly hit the wavelength of the light source, which would make it possible to increase the number of generated photons to the point that they are available at any given time. "It has already been proven that such resonators can be built in silicon," reports Berencen. "The missing link was a silicon-based source for single photons. And that's exactly what we've now been able to create."

But before they can consider practical applications, the HZDR researchers still have to solve some problems - such as a more systematic production of the new telecom single-photon sources. "We will try to implant the carbon into silicon with greater precision," explains Georgy Astakhov. "HZDR with its Ion Beam Center provides an ideal infrastructure for realizing ideas like this."

Research Report: "Isolation of telecom single-photon emitters in silicon for scalable quantum photonics"


Related Links
Helmholtz-Zentrum Dresden-Rossendorf
Stellar Chemistry, The Universe And All Within It


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


STELLAR CHEMISTRY
Scientists use photons as threads to weave novel forms of matter
Southampton UK (SPX) Aug 18, 2020
New research from the University of Southampton has successful discovered a way to bind two negatively charged electron-like particles which could create opportunities to form novel materials for use in new technological developments. Positive and negative electric charges attract each other, forming atoms, molecules, and all that we usually refer as matter. However, negative charges repel each other, and in order to form atom-like bound objects some extra glue is needed to compensate this electro ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

STELLAR CHEMISTRY
Future Rocket Engines May Include Large-Scale 3D Printing

Expanding ESTEC's Test Centre

Microsoft says small Xbox S game console on the way

Next artificial intelligence mission selected

STELLAR CHEMISTRY
Lockheed Martin to build Mesh Network of 10 smallsats

Lockheed, York nab $281.6M for new military satellite network

New US Space Force technology beats satellite jamming attempts in recent test

Airbus to build BADR-8 satellite for Arabsat

STELLAR CHEMISTRY
STELLAR CHEMISTRY
Tech combo is a real game-changer for farming

Launch of Russia's Glonass-K satellite postponed until October

GPS 3 receives operational acceptance

Air Force navigation technology satellite passes critical design review

STELLAR CHEMISTRY
China airshow 'will be held' in November, say backtracking organisers

How the US Air Force is making it easier for aircraft maintainers to see at night

AFRICOM begins B-52 training missions in North Africa

University of South Carolina redefining aircraft production process

STELLAR CHEMISTRY
SoftBank Group selling Arm to NVIDIA for up to $40 billion

DARPA Selects Teams to Increase Security of Semiconductor Supply Chain

New technology lets quantum bits hold information for 10,000 times longer than previous record

Pentagon: It's time to bring microelectronics manufacturing to the U.S.

STELLAR CHEMISTRY
China launches new optical remote-sensing satellite

Machine-learning nanosatellites to monitor global trade

Momentus awarded NASA TROPICS Pathfinder mission

ESA launches small Belgian satellite carrying VTT's remote sensing technology into space

STELLAR CHEMISTRY
Smog blankets US West Coast as deadly wildfires rage

In EU, 1 in 8 deaths linked to pollution: report

Bolsonaro slams 'cancer' of environmental NGOs

Mauritian citizen becomes powerful voice for oil spill anger









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.