Subscribe free to our newsletters via your
. Space Industry and Business News .




INTERN DAILY
Simplifying Heart Surgery with Stretchable Electronic Devices
by Staff Writers
Chicago IL (SPX) Nov 20, 2012


Researchers utilized stretchable electronics to create a catheter to make cardiac ablation simpler.

Researchers at the McCormick School of Engineering are part of a team that has used stretchable electronics to create a multipurpose medical catheter that can both monitor heart functions and perform corrections on heart tissue during surgery. The device marks the first time stretchable electronics have been applied to a surgical process known as cardiac ablation, a milestone that could lead to simpler surgeries for arrhythmia and other heart conditions.

The researchers had previously demonstrated the concept to apply stretchable electronics to heart surgery, but with this research improved the design's functionality to the point that it could be utilized in animal tests.

Cardiac ablation is a surgical technique that corrects heart rhythm irregularities by destroying specific heart tissue that triggers irregular heartbeats. The procedure is typically performed either with open-heart surgery or by inserting a series of long, flexible catheters through a vein in the patient's groin and into his heart.

Currently this catheter method requires the use of three different devices, which are inserted into the heart in succession: one to map the heart's signals and detect the problem area, a second to control positions of therapeutic actuators and their contact with the epicardium, and a third to burn the tissue away.

"Our catheter replaces all three devices previously needed for cardiac ablation therapy, making the surgery faster, simpler, and with a lower risk of complication," said Yonggang Huang, Joseph Cummings Professor of Civil and Environmental Engineering and Mechanical Engineering at McCormick.

Central to the design is a section of catheter that is printed with a thin layer of stretchable electronics. The catheter's exterior protects the electronics during its trip through the bloodstream; once inside the heart, the catheter is inflated like a balloon, exposing the electronics to a larger surface area inside the heart.

With the catheter is in place, the individual devices within can perform their specific tasks. A pressure sensor determines the pressure on the heart; an EKG sensor monitors the heart's condition during the procedure; and a temperature sensor controls the temperature so as not to damage surrounding tissue. The temperature can also be controlled during the procedure without removing the catheter.

These devices can deliver critical, high-quality information - such as temperature, mechanical force, and blood flow - to the surgeon in real time, and the system is designed to operate reliably without any changes in properties as the balloon inflates and deflates.

Researchers at McCormick led the efforts to design and optimize the system. (McCormick graduate student Shuodao Wang is a co-first author of the paper.) Device fabrications were done at the University of Illinois at Urbana-Champaign, and animal tests were conducted at University of Arizona Sarver Heart Center.

Other partners on this research include Seoul National University in the Republic of Korea; the University of Texas at Austin; Zhejiang University in China; the Harbin Institute of Technology in China; the Institute of High Performance Computing in Singapore; Massachusetts General Hospital; and Tufts University.

A paper describing the research, "Electronic Sensor and Actuator Webs for Large-Area Complex Geometry Cardiac Mapping and Therapy," was published November 12 in the Proceedings of the National Academy of Sciences.

.


Related Links
McCormick School of Engineering
Hospital and Medical News at InternDaily.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








INTERN DAILY
'Postage stamp' medical monitors described
Corvallis, Ore. (UPI) Nov 16, 2012
New sophisticated sensors to monitor medical vital signs are so small and cheap they could fit onto a bandage and cost less than a quarter, U.S. engineers say. Electrical engineers at Oregon State University have developed a new "system on a chip" sensor that could easily be manufactured in high volumes as a disposable electronic sensor with many potential applications due to its powerf ... read more


INTERN DAILY
Bug repellent for supercomputers proves effective

Keeneland Project Deploys New GPU Supercomputing System for the National Science Foundation

Lockheed Martin Expands Range Of Cloud Computing Services for UK Government

Invisibility cloaking to shield floating objects from waves

INTERN DAILY
Lockheed Martin to Demonstrate Key Component of Tactical MilSat Communications System

The Skynet 5D secure telecom satellite is received in French Guiana for Arianespace's December Ariane 5 mission

Lockheed Martin Completes On Orbit Testing of Second AEHF Satellite

LynuxWorks LynxOS-SE Deployed by ITT Exelis in New Line of Software-Defined Radios

INTERN DAILY
France, Germany seek Ariane compromise at ESA space meet

ILS Launches the EchoStar XVI Satellite

Arianespace's fourth Spaceport mission with Soyuz ready for fueling

Ariane 5's sixth launch of 2012

INTERN DAILY
Lockheed Martin Completes Critical Environmental Test on GPS III Pathfinder

Roscosmos Requests Glonass Project Contractor Head's Dismissal

Mobile GPS Tracking capability on JCB ruggedized mobile phones

Quattro Group Gains Visibility And Control With Ctrack

INTERN DAILY
India to buy nearly 130 Su-30 fighter jets from Russia

Chile phasing out C-212 tactical aircraft

Boeing Statement Supporting House Vote on Russia PNTR

China's home-grown plane rises to the challenge

INTERN DAILY
USC scientists 'clone' carbon nanotubes to unlock their potential for use in electronics

Intel to seek new CEO, Otellini to retire in May

First noiseless single photon amplifier

New study reveals challenge facing designers of future computer chips

INTERN DAILY
How many Russian Earth observation satellites will be in orbit by 2015?

A SPOT 6 Success Story

China launches third environment monitoring satellite

What Goes Down Must Come Back Up

INTERN DAILY
Earth on Acid: The Present and Future of Global Acidification

Technology can spot hazardous materials

Greenpeace warns of chemicals in global fashion

Cleanup of Most Challenging US Contaminated Groundwater Sites Unlikely for Many Decades




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement