Subscribe free to our newsletters via your
. Space Industry and Business News .




NANO TECH
Silver nanowires demonstrate unexpected self-healing mechanism
by Staff Writers
Chicago IL (SPX) Jan 28, 2015


File image.

With its high electrical conductivity and optical transparency, indium tin oxide is one of the most widely used materials for touchscreens, plasma displays, and flexible electronics. But its rapidly escalating price has forced the electronics industry to search for other alternatives.

One potential and more cost-effective alternative is a film made with silver nanowires--wires so extremely thin that they are one-dimensional--embedded in flexible polymers. Like indium tin oxide, this material is transparent and conductive. But development has stalled because scientists lack a fundamental understanding of its mechanical properties.

Now Horacio Espinosa, the James N. and Nancy J. Farley Professor in Manufacturing and Entrepreneurship at Northwestern University's McCormick School of Engineering, has led research that expands the understanding of silver nanowires' behavior in electronics.

Espinosa and his team investigated the material's cyclic loading, which is an important part of fatigue analysis because it shows how the material reacts to fluctuating loads of stress.

"Cyclic loading is an important material behavior that must be investigated for realizing the potential applications of using silver nanowires in electronics," Espinosa said. "Knowledge of such behavior allows designers to understand how these conductive films fail and how to improve their durability."

By varying the tension on silver nanowires thinner than 120 nanometers and monitoring their deformation with electron microscopy, the research team characterized the cyclic mechanical behavior.

They found that permanent deformation was partially recoverable in the studied nanowires, meaning that some of the material's defects actually self-healed and disappeared upon cyclic loading. These results indicate that silver nanowires could potentially withstand strong cyclic loads for long periods of time, which is a key attribute needed for flexible electronics.

"These silver nanowires show mechanical properties that are quite unexpected," Espinosa said. "We had to develop new experimental techniques to be able to measure this novel material property."

The findings were recently featured on the cover of the journal Nano Letters. Other Northwestern coauthors on the paper are Rodrigo Bernal, a recently graduated PhD student in Espinosa's lab, and Jiaxing Huang, associate professor of materials science and engineering in McCormick.

"The next step is to understand how this recovery influences the behavior of these materials when they are flexed millions of times," said Bernal, first author of the paper.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Northwestern University
Nano Technology News From SpaceMart.com
Computer Chip Architecture, Technology and Manufacture






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News





NANO TECH
Nanoshuttle wear and tear: It's the mileage, not the age
New York NY (SPX) Jan 28, 2015
As nanomachine design rapidly advances, researchers are moving from wondering if the nanomachine works to how long it will work. This is an especially important question as there are so many potential applications, for instance, for medical uses, including drug delivery, early diagnosis, disease monitoring, instrumentation, and surgery. In a new study led by Henry Hess, associate professor ... read more


NANO TECH
Is glass a true solid?

Scientists 'bend' elastic waves with new metamaterials

New laser could upgrade the images in tomorrow's technology

Report says no technological replacement exists for bulk data collection

NANO TECH
U.S. EA-18G Growlers getting new electronic warfare system

Third MUOS Satellite Launched And Responding To Commands

USAF orders addditional Boeing rescue radios

MUOS-3 satellite ready for launch

NANO TECH
Elon Musk says SpaceX using electric rockets is 'impossible' after 'Simpsons' episode

Soyuz Installed at Baikonur, Expected to Launch Wednesday

SES Entrusts Arianespace With SES-12

Google aboard as Musk's SpaceX gets $1 bn in funding

NANO TECH
Congressman claims relying on GLONASS jeopardizes US lives

Turtles use unique magnetic compass to find birth beach

W3C and OGC to Collaborate to Integrate Spatial Data on the Web

AirAsia disappearance fuels calls for real-time tracking

NANO TECH
Ten killed in fighter jet crash during NATO exercises in Spain

Navy OKs next-gen IRST for F/A-18s

BAE Systems support contract for Typhoon fighters extended

Switzerland restricts operations of F-5E aircraft

NANO TECH
Rice-sized laser, powered one electron at a time, bodes well for quantum computing

Solving an organic semiconductor mystery

New laser for computer chips

Smart keyboard cleans and powers itself -- and can tell who you are

NANO TECH
Satellites catch Austfonna shedding ice

M-TeX and MIST Experiments Launched from Alaska

NASA Data Peers into Greenland's Ice Sheet

Satellites for peat's sake

NANO TECH
Soils could keep contaminants in wastewater from reaching groundwater

Simple soil mixture reverses toxic stormwater effects

China air quality dire but improving: Greenpeace

A spoonful of sugar in silver nanoparticles to regulate their toxicity




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.