Space Industry and Business News  
Shooting Marbles At Four Miles A Second

NASA's Vertical Gun Range at Ames Research Center.
by Dave Dooling
for Science@NASA

Huntsville AL (SPX) Mar 15, 2007
NASA scientist Bill Cooke is shooting marbles and he's playing "keepsies." The prize won't be another player's marbles, but knowledge that will help keep astronauts safe when America returns to the Moon in the next decade.

Cooke is firing quarter-inch diameter clear shooters - Pyrex glass, to be exact - at soil rather than at other marbles. And he has to use a new one on each round because every 16,000 mph (7 km/s) shot destroys his shooter.

"We are simulating meteoroid impacts with the lunar surface," he explains. Cooke and others in the Space Environments Group at NASA's Marshall Space Flight Center have recorded the real thing many times. Their telescopes routinely detect explosions on the Moon when meteoroids slam into the lunar surface.

A typical flash involves "a meteoroid the size of a softball hitting the Moon at 27 km/s and exploding with as much energy as 70 kg of TNT."

"Mind you," says Cooke, "these are estimates based on a flash of light seen 400,000 km away. There's a lot of uncertainty in our calculations of speed, mass and energy. We'd like to firm up these numbers."

That's where the marbles come in....

Cooke is using the Ames Vertical Gun Range at NASA's Ames Research Center in Mountain View, CA, to shoot marbles into simulated lunar soil. The firings allow him to calibrate what he sees on the Moon. His work is funded by NASA's Office of Safety and Mission Assurance.

"We measure the flash so we can figure out how much of the kinetic energy goes into light," he explained. "Once we know this luminous efficiency, as we call it, we can apply it to real meteoroids when they strike the Moon." High-speed cameras and a photometer (light meter) record the results.

The Ames Vertical Gun Range was built in the 1960s to support Project Apollo, America's first human missions to the lunar surface. The Ames gun can fire a variety of shapes and materials, even clusters of particles, at speeds from 0.5 to 7 km/s. The target chamber usually is pumped down to a vacuum, and can be partially refilled to simulate atmospheres on other worlds or comets.

Equally important, the gun's barrel can be tilted to simulate impacts at seven different angles from vertical to horizontal since meteors rarely fly straight into the ground. Black powder propels the marble, and special valves capture the exhaust gases so they don't blow away the impact crater.

Cooke's experiments are being run in two rounds. The first set of 12 shots in October 2006 fired Pyrex glass balls into dust made from pumice, a volcanic rock, at up to 7 km/s. Follow-up experiments will use JSC-1a lunar simulant, one of the "true fakes" developed from terrestrial ingredients to mimic the qualities of moon soil.

Knowing the speed and mass of the projectile will let Cooke to scale the flash and estimate the energies of the softball-size meteoroids that hit the Moon at up to 72 km/s, more than six times the speed of the Ames gun.

But luminous efficiency is just part of the question. A lot of the impact energy goes into shattering and melting the projectile -- the main reason for using glass rather than metal -- and then spraying debris everywhere.

"The ejecta kicked out from an impact can travel hundreds of miles," Cooke continued. "We need to know more about that if we are going to live on the lunar surface for months at a time." Because the moon has virtually no atmosphere to slow down flying debris, particles land with the same speed that launched them from the impact site.

So you might dodge a bullet but still get caught by its shrapnel. And the question is, Are you more likely to get cut off at the ankles by debris spattered along the horizon, or hit from above by material on high, ballistic trajectories?

To gauge that danger, Cooke will measure the speed and direction of secondary particles by the sheet-laser technique. Lenses and mirrors spread a laser beam into paper-thin sheets of light so flying particles are briefly illuminated several times. The light traces then tell the size, direction, and speed of debris particles leaving an impact.

The technique requires a lot of image analysis, but it is cleaner and more accurate than the older way of hanging aluminum sheets in the chamber and counting holes.

The answers will help determine the kinds of shielding needed on exploration vehicles protecting humans where every day is for "keepsies."

Related Links
Lunar Dreams and more
Mars News and Information at MarsDaily.com
Lunar Dreams and more



Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News


A SMART Bridge To The Future Exploration Of The Moon
Paris, France (ESA) Mar 11, 2007
"SMART-1 data are helping to choose future landing sites for robotic and possible manned missions, and its instruments are upgraded and being flown again on the next generation of lunar satellites," says Bernard Foing, ESA SMART-1 Project scientist. "Even its spectacular impact campaign is helping NASA to plan their own moon crash."







  • Publish, Perish Attitudes Make Profs Balk At Online Publication
  • World Getting Ready To Change The Light Bulb
  • Hong Kong Internet Access Fully Restored
  • New Damage And Bad Weather Delay Asian Internet Repairs

  • Official Opening Of The Soyuz Launch Base Construction Site In French Guiana
  • Canadian Satellite Given Final Checks At Russian Launch Pad
  • First Ariane 5 Launch Of 2007 Finally Gets Away
  • United Launch Alliance Successfully Launches First USAF Atlas 5

  • Germans Urged To Give Foreign Travel A Rest To Curb Global Warming
  • Raytheon Team Proposes Single International Standard In ADS-B Pursuit
  • NASA Signs Defense Department Agreement
  • Lockheed Martin And FAA Reach Significant Milestone In Transformation Of Flight Services

  • QinetiQ Completes Urgent Satellite Communications System Order For MOD Helicopters
  • Harris Gets Follow-On Production Contract For Military Tactical Communications System
  • US Army Developing Better Access To Intelligence Data Through Distributed Common Ground System
  • General Dynamics Completes Milestone In Design Of US Navy Mobile User Objective System

  • Saab Space To Supply Antennas For New Generation Direct-To-Mobile Satellites
  • Virtual Reality For Virtual Eternity
  • Boeing Orbital Express to Demonstrate New On-Orbit Servicing Capability
  • Top 10 Materials Moments In History Announced

  • Fifth Annual Space Career Fair Set For April 12
  • 30th Space Wing Welcomes New Commander
  • Joel Levine Named Mars Scout Program Scientist
  • Intelsat Names William Shernit President Of Intelsat General Subsidiary

  • A Cold-Water Monster Current Off Sydney
  • CryoSat-2 On The Road To Recovery
  • Climate Change View Clearer With New Oceans Satellite
  • Space Scientists To Take The Pulse Of Planet Earth

  • New Receiver Board Gets All The Right Signals
  • Glonass Cheaper To Build Than GPS Says Putin
  • Raytheon To Pursue Air Force Upgrade For NextGen GPS Control Segment
  • ESA Award SSTL Contract To Build A Second GIOVE-A

  • The content herein, unless otherwise known to be public domain, are Copyright Space.TV Corporation. AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space.TV Corp on any Web page published or hosted by Space.TV Corp. Privacy Statement