Space Industry and Business News  
CHIP TECH
Shielded quantum bits
by Staff Writers
Konstanz, Germany (SPX) Oct 29, 2018

Schematic representation of the new spin qubit consisting of four electrons (red) with their spins (blue) in their semiconductor environment (grey).

The researchers have found ways to shield electric and magnetic noise for a short time. This will make it possible to use spins as memory for quantum computers, as the coherence time is extended and many thousand computer operations can be performed during this interval. The study was published in the current issue of the journal Physical Review Letters.

The technological vision of building a quantum computer does not only depend on computer and information science. New insights in theoretical physics, too, are decisive for progress in the practical implementation. Every computer or communication device contains information embedded in physical systems.

"In the case of a quantum computer, we use spin qubits, for example, to realize information processing", explains Professor Guido Burkard, who carries out his research in cooperation with colleagues from Princeton University. The theoretical findings that led to the current publication were largely made by the lead author of the study, doctoral researcher Maximilian Russ from the University of Konstanz.

In the quest for the quantum computer, spin qubits and their magnetic properties are the centre of attention. To use spins as memory in quantum technology, they must be lined up, because otherwise they cannot be controlled specifically. "Usually magnets are controlled by magnetic fields - like a compass needle in the Earth's magnetic field', explains Guido Burkard.

"In our case the particles are extremely small and the magnets very weak, which makes it really difficult to control them".

The physicists meet this challenge with electric fields and a procedure in which several electrons, in this case four, form a quantum bit. Another problem they have to face is the electron spins, which are rather sensitive and fragile. Even in solid bodies of silicon they react to external interferences with electric or magnetic noise.

The current study focuses on theoretical models and calculations of how the quantum bits can be shielded from this noise - an important contribution to basic research for a quantum computer: If this noise can be shielded for even the briefest of times, thousands of computer operations can be carried out in these fractions of a second - at least theoretically.

The next step for the physicists from Konstanz will now be to work with their experimental colleagues towards testing their theory in experiments. For the first time, four instead of three electrons will be used in these experiments, which could, e.g., be implemented by the research partners in Princeton.

While the Konstanz-based physicists provide the theoretical basis, the collaboration partners in the US perform the experimental part.

This research is not the only reason why Konstanz is now on the map for qubit research. This autumn, for example, Konstanz attracted the internationally leading scientific community in this field for the "4th School and Conference on Based Quantum Information Processing".

Research paper


Related Links
University of Konstanz
Computer Chip Architecture, Technology and Manufacture
Nano Technology News From SpaceMart.com


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


CHIP TECH
Artificial intelligence controls quantum computers
Munich, Germany (SPX) Oct 26, 2018
Quantum computers could solve complex tasks that are beyond the capabilities of conventional computers. However, the quantum states are extremely sensitive to constant interference from their environment. The plan is to combat this using active protection based on quantum error correction. Florian Marquardt, Director at the Max Planck Institute for the Science of Light, and his team have now presented a quantum error correction system that is capable of learning thanks to artificial intelligence. ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

CHIP TECH
Memory-steel makes for new material to strengthen buildings

Molecular memory can be used to increase the memory capacity of hard disks

Use of raw materials to double by 2060: OECD

Novel material could make plastic manufacturing more energy-efficient

CHIP TECH
Navistar contracted by Army for MRAP tech support

Scientists want to blast holes in clouds with laser to boost satellite communication

Military communications satellite online in orbit following launch

Aerojet Rocketdyne powers 4th AEHF-4 to orbital position

CHIP TECH
CHIP TECH
China launches twin BeiDou-3 satellites

Army researchers' technique locates robots, soldiers in GPS-challenged areas

Boeing to provide technical work on JDAM GPS-guided bombs

New Study Tracks Hurricane Harvey Stormwater with GPS

CHIP TECH
Merging mathematical and physical models toward building a more perfect flying vehicle

Cathay Pacific hit by data leak affecting 9.4m passengers

Indonesia $200m in arrears on fighter project: S. Korea

Dandelion seeds reveal newly discovered form of natural flight

CHIP TECH
Inexpensive chip-based device may transform spectrometry

Announcing the discovery of an atomic electronic simulator

Artificial intelligence controls quantum computers

Printed 3D supercapacitor electrode breaks records in lab tests

CHIP TECH
Earth's core is definitely solid, study finds

DigitalGlobe expands NASA partnership with sole-source EO data contract

African smoke-cloud connection target of NASA airborne flights

Innovative tool allows continental-scale water, energy, and land system modeling

CHIP TECH
Indian court eases firecracker ban even as pollution soars

Uber plans pollution levy on London fares

Delhi holds breath as burning farms herald pollution season

Study: Air pollution deaths in U.S. dropped by half between 1990, 2010









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.