Space Industry and Business News  
CHIP TECH
Semiconductors combine forces in photocatalysis
by Staff Writers
Washington DC (SPX) Jan 25, 2019

file illustration only

A significant advance in the photocatalytic activity of conventional materials is demonstrated by a two-dimensional heterostructure comprising nanolayers of two semiconductors: black phosphorus and bismuth tungstate.

As researchers have reported in the journal Angewandte Chemie, this catalyst harnesses the energy of visible light to split water and produce hydrogen, and to break down nitrogen monoxide in exhaust gas.

Just as plants use photosynthesis, certain semiconductors are able to absorb the energy of light and use this to power chemical reactions. For example, bismuth tungstate (Bi(2)WO(6)) should, in principle, be suitable for the photocatalytic degradation of nitrogen monoxide (NO) and the production of hydrogen.

However, results so far have not been very satisfactory. One approach to improving the performance of this material is to bind two-dimensional nanolayers of the bismuth tungstate into a layered heterojunction with a second nanolayer of a different semiconductor.

A team led by Dongyun Chen and Jianmei Lu at Soochow University, Suzhou, and Jiangsu University, Zhenjiang (China) found that black phosphorus may be a suitable partner for this type of heterostructure. This material demonstrates photocatalytic properties, though it has had limited application to date.

Black phosphorus consists of rippled layers of six-membered rings that can be split into individual atomic layers. The researchers covered these nanolayers evenly with 50 nm chips of bismuth tungstate. The two semiconductors are in very close contact in this simply and efficiently producible heterostructure, resulting in a synergetic effect.

The black phosphorus provides a broad absorption range into the spectrum of sunlight. The energy levels of the electrons in the two materials are favorably placed. This allows the light-induced positive and negative charges (electron-hole pairs) to be efficiently separated, transported within the heterostructure, and transferred to molecules. The researchers propose that the charge-transfer mechanism resembles the so-called Z-scheme present in photosynthesis.

As expected, the photocatalytic degradation of NO by the heterostructure was significantly more effective than with other bismuth-based materials. For the photocatalytic production of hydrogen, an additional platinum-based co-catalyst was added.

Under irradiation, electrons can move from the heterostructure to platinum atoms, and from there they are able to rapidly reduce the H(+) ions in water to form hydrogen gas. With visible light, the efficiency of the catalytic process was nine times that of pure bismuth tungstate.

The researchers suggest that black phosphorus may have broad applicability that extends to renewable energies and treatment of exhaust gases.

Research paper


Related Links
Wiley
Computer Chip Architecture, Technology and Manufacture
Nano Technology News From SpaceMart.com


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


CHIP TECH
Theoreticians investigate puzzling phenomenon in a quantum gas
Frankfurt, Germany (SPX) Jan 18, 2019
Imagine a disc made of an insulator with a conducting edge along which a current always flows in the same direction. "This makes it impossible for a quantum particle to be impeded, because the state of flowing in the other direction simply doesn't exist," explains Bernhard Irsigler, the first author of the study. In other words: in the edge state, the current flows without resistance. This could be used, for example, to increase the stability and energy efficiency of mobile devices. Research is al ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

CHIP TECH
New technology uses lasers to transmit audible messages to specific people

'The new oil': Dublin strikes it rich as Europe's data hub

New insights into magnetic quantum effects in solids

A new method developed to produce precursors for high-strength carbon fibers processing

CHIP TECH
Reflectarray Antenna offers high performance in small package: DARPA

BAE signs $79.8M contract with Navy for Pacific comms support

Russia to Complete Military Satellite Constellation Blagovest in April

Honeywell and GetSAT win multi-million dollar deal with US Government

CHIP TECH
CHIP TECH
Magnetic North's erratic behavior forces update to global navigation system

US Air Force contracts Lockheed Martin to continue GPS ground control supprt

GPS-denied navigation on small unmanned helicopters

China's BeiDou officially goes global

CHIP TECH
Never mind climate change, Davos prefers private jets

French military awards Thales contract to develop Rafale F4 sensors

Singapore picks US F-35 fighter jet over Europe, China rivals

Leonardo to support British Apache helicopters under $379M deal

CHIP TECH
Ultra ultrasound to transform new tech

Theoreticians investigate puzzling phenomenon in a quantum gas

Brilliant glow of paint-on semiconductors comes from ornate quantum physics

Five thousand times faster than a computer

CHIP TECH
Russia to launch Arctic weather satellite

Satellogic signs agreement with CGWIC to launch earth observation constellation of 90 satellites

Researchers develop new zoning tool that provides global topographic datasets in minutes

UK Space Agency COMPASS project aims to to improve crop yields for Mexican farmers

CHIP TECH
In China, unhappiness tracks poor air quality

Kabul chokes on dirty air as temperatures plunge

Dow, Total part of group that raised $1B to clean plastic in ocean

Study: Access to urban green spaces favor the rich, educated









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.