Space Industry and Business News  
CHIP TECH
Semiconductor nanoparticles show high luminescence in a polymer matrix
by Staff Writers
Toyohashi, Japan (SPX) Oct 06, 2015


Polymer-ZnO nanoparticle QDs by dispersion polymerization in supercritical CO2 are shown. Image courtesy Toyohashi University Of Technology. For a larger version of this image please go here.

Semiconductor nanocrystals known as quantum dots (QDs) are increasingly being used as photoluminescent materials in bio-imaging, photonics, and optoelectronic applications. However, these QDs must have stable photoluminescence properties to be used in these applications. Photoluminescence stability of QDs is achieved by chemically modifying the surface of the QDs.

However, chemical modification of the surface typically requires large amounts of organic solvents that are harmful to the environment. To solve this problem, many researchers have attempted to synthesize polymer-nanoparticle composites by using supercritical fluid (SCF)-based technology.

Supercritical CO2 has emerged as the most extensively studied SCF medium, because it is readily available, inexpensive, nonflammable, and environmentally benign.

Toyohashi Tech researchers in cooperation with researchers at the National Institute of Technology, Kurume College have investigated the formation of nanostructured material using supercritical CO2.

They have demonstrated the formation of composite nanoparticles of luminescent ZnO QDs and polymer by dispersion polymerization in supercritical CO2. As a result of the supercritical-CO2-assisted surface modification of QDs, the QDs were well dispersed in the polymer matrix and showed high luminescence.

"Unfortunately, the photoluminescence properties of pristine luminescent QDs were quenched in supercritical CO2. The surface structure of the QDs was destroyed by supercritical CO2.", explains associate professor Kiyoshi Matsuyama at the National Institute of Technology, Kurume College, "We found that the quenching of ZnO QDs could be prevented by coating with silica to obtain PMMA-ZnO composite QDs with high luminescence using a supercritical-CO2-assisted surface modification with polymer."

Our research shows that the supercritical-fluid-assisted process provides an environmentally benign route for producing stabilized luminescent materials.

Kiyoshi Matsuyama, Yu-ki Maeda, Takaaki Matsuda, Tetsuya Okuyama, Hiroyuki Muto (2015). Formation of poly(methyl methacrylate)-ZnO nanoparticle quantum dot composites by dispersion polymerization in supercritical CO2, The Journal of Supercritical Fluids, 103, 83-89.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Toyohashi University of Technology
Computer Chip Architecture, Technology and Manufacture
Nano Technology News From SpaceMart.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
CHIP TECH
Performance cloning boosts computer chip memory systems design
Raleigh NC (SPX) Oct 05, 2015
North Carolina State University researchers have developed software using two new techniques to help computer chip designers improve memory systems. The techniques rely on "performance cloning," which can assess the behavior of software without compromising privileged data or proprietary computer code. Computer chip manufacturers try to design their chips to provide the best possible perfo ... read more


CHIP TECH
Thousand-fold fluorescence enhancement in an all-polymer thin film

Australian broadband satellite begins post-launch maneuvers

ESA entrusts Indra with data storage for the Sentinel 2B satellite

WPI team recovers rare earths from electric and hybrid vehicle motors

CHIP TECH
LGS Innovations enhances ISR technologies

Harris supplying tactical radios to Special Operations Forces

Skynet 5A satellite move to Asia-Pacific complete

Harris Corporation supplying ground-to-air radios to ANG

CHIP TECH
Arianespace signs ARSAT to launch a new satellite for Argentina

Ariane 5 orbits Sky Muster and ARSAT-2

A satellite launcher for the Middle East

45th Space Wing supports ULA's 100th launch

CHIP TECH
Galileo satellites handed over to operator

New sports technology provides a GPS alternative

Russia, Brazil Sign Contract for Glonass Ground Measuring Station

DARPA taps Rockwell Collins for GPS backup technologies

CHIP TECH
Report: Asia a growing market for light military helicopters

Boeing's digital upgrade of B-52s to be completed soon

F-22 Raptors deploy to Middle East

BAE Systems developing new, digital EW system for F-15s

CHIP TECH
New way of retaining quantum memories stored in light

Performance cloning boosts computer chip memory systems design

Semiconductor nanoparticles show high luminescence in a polymer matrix

Researchers grow nanocircuitry with semiconducting graphene nanoribbons

CHIP TECH
SMOS meets ocean monsters

Monsoon mission: A better way to predict Indian weather

Satellite Data Helps Migrating Birds Survive

exactEarth Launches Advanced Equatorial AIS Satellite

CHIP TECH
Plastic-eating worms to ease pollution problems

US tightens smog standards, environmentalists cry foul

Goods manufactured in China not good for the environment

Singapore moves against Indonesian firms over haze









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.