Space Industry and Business News  
SPACE MEDICINE
Self-sealing miniature 'wound' created by engineers
by Staff Writers
Atlanta GA (SPX) Feb 14, 2018

Watch as blood cells stream through a "wound" and a clot forms. The red-stained cells are actually white blood cells. A green extracellular glue can be seen at the top of the wound; this is fibrin, which holds the clot together.

Biomedical engineers have developed a miniature self-sealing model system for studying bleeding and the clotting of wounds. The researchers envision the device as a drug discovery platform and potential diagnostic tool.

A description of the system, and representative movies, were published Tuesday online by Nature Communications.

Lead author Wilbur Lam, MD, PhD says that blood clotting involves the damaged blood vessel, platelets, blood clotting proteins that form a net-like mesh, and the flow of the blood itself.

"Current methods to study blood clotting require isolation of each of these components, which prevents us from seeing the big picture of what's going with the patient's blood clotting system," says Lam, assistant professor in the Department of Pediatrics at Emory University School of Medicine and in the Wallace H. Coulter Department of Biomedical Engineering at Georgia Tech and Emory University.

The model is the result of a collaboration between Lam's group at Emory and Georgia Tech and Shawn Jobe, MD, PhD at the Blood Center of Wisconsin. The co-first authors of the paper are research specialist Yumiko Sakurai, instructor Elaissa Hardy, PhD and senior engineer Byungwook Ahn, PhD, now at LG Electronics.

The system is the first to reproduce all the aspects of blood vessel injury seen in the microvasculature: blood loss due to trauma, clot formation by whole blood and repair of the blood vessel lining. Previous models might only simulate clot formation, for example. The model does not include smooth muscle and does not reproduce aspects of larger blood vessels, however.

The system consists of a layer of human endothelial cells, which line blood vessels, cultured on top of a pneumatic valve. The "wound" is created by activating a pneumatic valve, opening what Lam calls a trap door. Donated human blood flows through the wound, which is about 130 micrometers across.

In the accompanying movie, most of the blood cells are seen as grey: erythrocytes are round grey donuts, while platelets are smaller specks. The red-stained cells are actually white blood cells. A green extracellular "glue" can be seen at the top of the wound; this is fibrin, which holds the clot together.

In real time, it takes about 8 minutes for blood flow into the wound to stop. Without the endothelial cells, the blood flow does not stop.

The system responds to manipulation by drugs and other alterations that reproduce clotting disorders. Blood from hemophilia A patients form abnormal clots and shows extended bleeding time in the model.

In the Nature Communications paper, the authors also describe insights into how the drug eptifibatide affects the interactions of platelets and other cells in the 3-D space of a wound.

Research paper


Related Links
Emory Health Sciences
Space Medicine Technology and Systems


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


SPACE MEDICINE
NASA Twins Study confirms preliminary findings
Houston TX (SPX) Feb 02, 2018
The Twin Study propelled NASA into the genomics era of space travel. It was a ground-breaking study comparing what happened to astronaut Scott Kelly, in space, to his identical twin brother, Mark, who remained on Earth. The perfect nature versus nurture study was born. The Twins Study brought ten research teams from around the country together to accomplish one goal: discover what happens to the human body after spending one year in space. NASA has a grasp on what happens to the body after the sta ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

SPACE MEDICINE
Scientists can now 3D print nanoscale metal structures

Helping authorities respond more quickly to airborne radiological threats

Singapore takes next step towards implementing world's first space-based VHF communications

Latest Data From IMAGE Indicates Spacecraft's Power Functional

SPACE MEDICINE
Improve European defence with new commercial space capabilities

Military innovation demands state-of-the-art satellite connectivity for maritime applications

L-3 to provide advanced optics, sensors to U.S. Air Force

DARPA Seeks to Improve Military Communications with Digital Phased-Arrays at Millimeter Wave

SPACE MEDICINE
SPACE MEDICINE
Europe claims 100 million users for Galileo satnav system

Airbus selected by ESA for EGNOS V3 program

Pentagon probes fitness-app use after map shows sensitive sites

China sends twin BeiDou-3 navigation satellites into space

SPACE MEDICINE
Malaysia says no mystery over 'missing' MH370 search ship

Lockheed Martin picks BAE Systems to modernize UAE's F-16 fleet

Lockheed awarded $119M for support of Air Force F-35s

Lockheed awarded contract for Taiwan F-16 program support

SPACE MEDICINE
Understanding heat behavior in electronic devices boosts performance

Artificial agent designs quantum experiments

2-D tin stanene without buckling: A possible topological insulator

Quantum race accelerates development of silicon quantum chip

SPACE MEDICINE
Ozone at lower latitudes not recovering, despite ozone hole healing

SSTL and 21AT announce new Earth Observation data contract

NASA Space Sensors to Address Key Earth Questions

Ozone layer declining over populated zones: study

SPACE MEDICINE
Vietnam activist jailed for 14 years over fish kill protests

Duterte slams top Philippine tourist island as 'cesspool'

An efficient and sustainable way to filter salt and metal ions from water

In Kosovo's capital, 'breathing harms health'









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.