Space Industry and Business News  
ENERGY TECH
Self-heating, fast-charging battery makes electric vehicles climate-immune
by Staff Writers
University Park PA (SPX) Jul 06, 2018

illustration only

Californians do not purchase electric vehicles because they are cool, they buy EVs because they live in a warm climate. Conventional lithium-ion batteries cannot be rapidly charged at temperatures below 50 degrees Fahrenheit, but now a team of Penn State engineers has created a battery that can self-heat, allowing rapid charging regardless of the outside chill.

"Electric vehicles are popular on the west coast because the weather is conducive," said Xiao-Guang Yang, assistant research professor in mechanical engineering, Penn State. "Once you move them to the east coast or Canada, then there is a tremendous issue. We demonstrated that the batteries can be rapidly charged independently of outside temperature."

When owners can recharge car batteries in 15 minutes at a charging station, electric vehicle refueling becomes nearly equivalent to gasoline refueling in the time it takes. Assuming that charging stations are liberally placed, drivers can lose their "range anxiety" and drive long distances without worries.

Previously, the researchers developed a battery that could self-heat to avoid below-freezing power drain. Now, the same principle is being applied to batteries to allow 15-minute rapid charging at all temperatures, even as low as minus 45 degrees F.

The self-heating battery uses a thin nickel foil with one end attached to the negative terminal and the other extending outside the cell to create a third terminal. A temperature sensor attached to a switch causes electrons to flow through the nickel foil to complete the circuit when the temperature is below room temperature.

This rapidly heats up the nickel foil through resistance heating and warms the inside of the battery. Once the battery's internal temperature is above room temperature, the switch turns opens and the electric current flows into the battery to rapidly charge it.

"One unique feature of our cell is that it will do the heating and then switch to charging automatically," said Chao-Yang Wang, William E.

Diefenderfer Chair of mechanical engineering, professor of chemical engineering and professor of materials science and engineering, and director of the Electrochemical Engine Center. "Also, the stations already out there do not have to be changed. Control off heating and charging is within the battery, not the chargers."

The researchers report the results of their prototype testing in this week's edition of the Proceedings of the National Academy of Sciences. They found that their self-heating battery could withstand 4,500 cycles of 15-minute charging at 32 degrees F with only a 20-percent capacity loss. This provides approximately 280,000 miles of driving and a lifetime of 12.5 years, longer than most warranties.

A conventional battery tested under the same conditions lost 20-percent capacity in 50 charging cycles.

Lithium-ion batteries degrade when rapidly charged under 50 degrees F because, rather than the lithium ions smoothly integrating with the carbon anodes, the lithium deposits in spikes on the anode surface.

This lithium plating reduces cell capacity, but also can cause electrical spikes and unsafe battery conditions. Currently, long, slow charging is the only way to avoid lithium plating under 50 degrees F.

Batteries heated above the lithium plating threshold, whether by ambient temperature or by internal heating, will not exhibit lithium plating and will not lose capacity.

"This ubiquitous fast-charging method will also allow manufacturers to use smaller batteries that are lighter and also safer in a vehicle," said Wang.


Related Links
Penn State
Powering The World in the 21st Century at Energy-Daily.com


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


ENERGY TECH
Engineer creates new design for ultra-thin capacitive sensors
Binghamton NY (SPX) Jul 06, 2018
As part of ongoing acoustic research at Binghamton University, State University at New York Distinguished Professor Ron Miles has created a workable sensor with the least possible resistance to motion. The thin and flexible sensor is ideal for sensing sounds because it can move with the airflow made by even the softest noises and addresses issues with accelerometers, microphones and many other similar sensors. "The goal was to create a sensor that only resists gravity," said Miles. "The sensor nee ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

ENERGY TECH
Dutch city to unveil world's first 3D-printed housing complex

Plastic is light, versatile and here to stay -- for now

Scientists calculate impact of China's ban on plastic waste imports

Hope for new catalysts with high activity

ENERGY TECH
New Land Mobile Technology Driving The Need For Modern Satcom Capabilities

On-the-move communications system set to field this fall

Lockheed Martin's 5th AEHF comsat completes launch environment test

IAP Worldwide Services tapped for satellite systems

ENERGY TECH
ENERGY TECH
Next four Galileo satellites fuelled for launch

NASA Tests Solar Sail for CubeSat that Will Study Near-Earth Asteroids

India's Domestic SatNav System Hits Major Roadblock Ahead of Commercial Release

Russia launches Soyuz-21b with Glonass-M navigation satellite

ENERGY TECH
PKL to provide F-15 operations training for Singapore air force

Bell-Boeing receives $4.2B contract for Ospreys for U.S., Japan

Polish MiG crash kills fighter pilot

GE contracted for F414 engine support on Super Hornet, Growler aircraft

ENERGY TECH
US hits Chinese firm Sinovel with $1.5 mn fine for stealing technology

China court 'bans sales' of chips from US firm Micron

Closing the gap: On the road to terahertz electronics

Scientists pump up chances for quantum computing

ENERGY TECH
Report accuses China firms over ozone-depleting gas

Tiny cameras snap pictures of Great Lake

First laser light for GRACE Follow-On

Airbus and Planet join forces to bring new geospatial products to market

ENERGY TECH
India's most populous state bans plastic, yet again

Chilean court ratifies plastic bag ban after appeal

Trump's scandal-plagued environment chief resigns

Seattle bans plastic straws, but US still has a long way to go









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.