Space Industry and Business News  
FLORA AND FAUNA
Seeing the chemistry of vision
by Staff Writers
Warsaw, Poland (SPX) Jan 13, 2022

illustration only

The biochemistry of vision is a complex process. The molecules supporting the visual pigments that allow us to see our surrounding reality have remained essentially invisible for scientists for a long time. The team led by Prof. Maciej Wojtkowski from the International Centre for Translational Eye Research (ICTER) has changed that, thanks to an innovative state-of-the art imaging device that they have developed.

It is commonly said that eyes are the mirror of the soul; however, they are undoubtedly our window on the world. The retina of the eye represents the first and very important processing station for the path of light as it is converted into an image. Molecular reactions occurring in the retina are crucial for the perception of visual stimuli from the environment.

For many years scientists and doctors have not been able to observe molecules present in the natural milieu of the retinal photosensitive cells in vivo. The team of scientists led by Prof. Maciej Wojtkowski from ICTER at the Institute of Physical Chemistry, Polish Academy of Sciences (IChF PAS) have developed a two-photon excited fluorescence scanning laser ophthalmoscope (TPEF-SLO).

It is an instrument that remarkably allows viewing the biochemistry of vision in the living eye in real time. Prof. Wojtkowski points out that "thanks to close collaborations with biochemist Prof. Kris Palczewski from the University of California Irvine and the laser group of Prof. Grzegorz Sobon from the Wroclaw University of Science and Technology, we can quickly and effectively demonstrate the capabilities of the new imaging method and validate its utility for diagnosing disease progression and treatment, leading to its use in clinical practice."

How does it happen that we see?
The human eye is one of the most precise organs of our body, capable of distinguishing about 200 pure colors. Mixing these colors produces about 17,000 different hues, and taking into account our ability to distinguish about 300 intensities of color associated with light intensity, we get a staggering 5 million perceived colors.

The retina, the part of the eye that receives visual stimuli, contains photosensitive cells, cones and rods. The cones enable us to see and distinguish colors in bright light, while the rods are sensitive to single pulses of visible light at dusk or night. Visual impressions are transmitted via the optic nerve to the primary visual cortex in the brain, but the signals that carry the visual impressions are the result of biochemical processes that occur in the photoreceptors.

"Simplifying, we can say that the human eye is a biochemical factory whose activity depends on biochemical transformations of a single molecule, retinal. This molecule is indispensable for the function of the visual pigments, namely rhodopsin in rods" - says Prof. Maciej Wojtkowski.

Rhodopsin, the visual pigment in rods is a light sensitive G-protein coupled receptor (GPCR). Absorption of a quantum of radiation causes isomerization of 11-cis-retinal within the rhodopsin binding pocket and subsequent hyperpolarization of the photoreceptor membranes. In this manner the visual impulse is initiated and transmitted to the brain. A deficiency of vitamin A, precursor of retinal, reduces the ability to see at night, known as night blindness or nyctalopia.

Unfortunately, the molecules indispensable for sustaining visual pigments are undetectable by scientific instruments during virtually the entire visual cycle in living humans. "However, there is one instant in the visual cycle when the molecules can be seen; we can't detect them with UV light, but we can observe them thanks to so-called fluorescence with two-photon excitation," adds Dr. Jakub Boguslawski, a main researcher on the project.

Two-photon process, color palette
Ophthalmic imaging techniques are fundamental in diagnosing retinal pathologies. With optical tomography (OCT), scanning laser ophthalmoscopy (SLO), and fundus autofluorescence, we have made advances in understanding mechanisms of eye diseases. This collection of advanced technologies, however, is an insufficient arsenal for full insight into the chemistry of vision. Non-invasive assessment of metabolic processes occurring in retinal cells (visual pigment regeneration) is essential for the development of future therapies.

In the case of age-related macular degeneration (AMD), which is one of the most common diseases causing blindness, cells within a disease-altered retina cannot be distinguished at an early stage from cells of a normal healthy retina. However, the differences can be picked up by biochemical markers, if these markers can be fluorescently induced.

This is the idea behind two-photon fluorescence imaging (TPE). It is an advanced technique for measuring compounds that support the function of visual pigments and are not visible in other tests.

Compared to traditional imaging methods based on single-photon fluorescence, TPE allows the metabolites of vitamin A that are involved in vision, such as retinol or retinol esters, to be viewed. "The eye is an ideal organ for multiphoton imaging," says Prof. Wojtkowski, whose team is responsible for the discovery. Eye tissues such as the sclera, cornea, and lens are highly transparent to near-infrared light. This, in turn, penetrates retinal tissues in a non-invasive way.

Images obtained with TPEF-SLO have confirmed that this is an effective way to view the molecules that sustain visual function. Comparison of data from humans with retinal degeneration with mouse models of the disease revealed a similar rapid accumulation of bisretinoid condensation products.

"We believe that visual cycle intermediates and toxic byproducts of this metabolic pathway could be measured and quantified using TPE imaging," says Dr. Grazyna Palczewska, one of the project's main investigators.

This new age instrument, enabling non-invasive assessment of the metabolic state of the human retina, opens numerous therapeutic possibilities for degenerative diseases of the retina, including the testing of new drugs. By understanding the biochemistry of vision and the alterations that occur in disease, physicians will be able to pinpoint precise locations of the lesions and assess the impact of therapy.

Research Report: "In vivo imaging of the human eye using a two-photon excited fluorescence scanning laser ophthalmoscope"


Related Links
Institute of Physical Chemistry of the Polish Academy of Sciences
Darwin Today At TerraDaily.com


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


FLORA AND FAUNA
Russian baby tiger fights for life after frostbite, surgery
Moscow (AFP) Jan 12, 2022
Russian animal rescuers said Wednesday they were fighting for the life of an Amur tiger cub who had been found dying from exhaustion and frostbite in the country's far east. An emaciated female tiger cub aged around four or five months and suffering from severe frostbite and injuries was found by a local fisherman on a river bank in the south of the Primorye region late last year. The fisherman reported the find to wildlife carers who evacuated the cub to a rehabilitation centre, said Amur Tiger ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

FLORA AND FAUNA
Controlling how "odd couple" surfaces and liquids interact

New DAF software factory aims to digitally transform AFRL

US bill aims to end China's 'chokehold' on America's rare earth supplies

Chile court freezes multi-million dollar lithium deal

FLORA AND FAUNA
SPAINSAT NG program successfully passes Critical Design Review

Honeywell, SES and Hughes demonstrate Multinetwork Airborne Connectivity

Airbus and OneWeb expand their partnership to connect European defence and security forces

SES Government Solutions releases new unified operational network

FLORA AND FAUNA
FLORA AND FAUNA
Arianespace to launch eight new Galileo satellites

Two new satellites mark further enlargement of Galileo

Galileo satellites given green light for launch

Brain and coat from RUAG Space for Galileo navigation satellites

FLORA AND FAUNA
Hong Kong airport bans transit passengers from most of world

India defence chief's pilot 'disoriented by weather': inquiry

Cathay Pacific says crews spent 73,000 nights in quarantine in 2021

Wreck of Taiwan's most advanced fighter jet found after crash

FLORA AND FAUNA
World's first hBN-based deep ultraviolet LED

Reasserting U.S. leadership in microelectronics

Semiconductor spin qubits gain further credibility as leading platform for quantum computing

Quantum computing in silicon hits 99% accuracy

FLORA AND FAUNA
How the Earth's tilt creates short, cold January days

A dirt cheap solution? Common clay materials may help curb methane emissions

UK sets New Year's Day temperature record

UK records warmest ever New Year's Eve

FLORA AND FAUNA
Microplastic pollution linger in rivers for years before entering oceans

Environmental activist, 14, shot dead in Colombia

Pakistan court orders golf course shut in rare ruling against military

Understanding air pollution from space









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.