Subscribe free to our newsletters via your
. Space Industry and Business News .




STELLAR CHEMISTRY
Seeing a supernova in a new light
by Staff Writers
Rehovot, Israel (SPX) Jul 01, 2015


Supernova 3C58, first observed in the year 1181 AD by Chinese and Japanese astronomers, was imaged by the Chandra telescope in X-ray emissions. Image courtesy Weizmann Institute of Science, NASA/CXC/SAO. For a larger version of this image please go here.

Type Ia supernovae are the "standard candles" astrophysicists use to chart distance in the Universe. But are these dazzling exploding stars truly all the same To answer this, scientists must first understand what causes stars to explode and become supernovae. Recently, a unique collaborative project between the California Institute of Technology (Caltech) and the Weizmann Institute of Science provided a rare glimpse of the process. Their findings were published in Nature.

The project, called the Palomar Transient Factory, is a robotic telescope system based in Southern California that scans the night sky for changes.

In May, halfway around the world at the Weizmann Institute, Dr. Ilan Sagiv realized that one of the bright new lights the Palomar telescope had pinpointed was, indeed, a supernova - just four days into the explosion - and he sounded the alert sending the Swift Space Telescope on NASA's Swift Satellite to observe the blast. But the Swift Telescope also observed in an unusual way - in the invisible, ultraviolet range.

"Ultraviolet is crucial," says the Weizmann Institute's Prof. Avishay Gal-Yam of the Particle Physics and Astrophysics Department, "because initially, supernova blasts are so energetic that the most important information can only be gathered in short wavelengths. And it can only be seen from a space telescope, because the ultraviolet wavelengths are filtered out in the Earth's atmosphere."

The researchers collected observations ranging from the energetic X-ray and UV all the way to the radio wavelengths, the latter effort led by the Institute's Dr. Assaf Horesh. Caltech graduate student Yi Cao, who was the lead author on the paper, and his advisor Prof. S. Kulkarni, compared the figures from the observations to various models to see which fit.

Astrophysicists mostly agree that the exploding stars that become type Ia supernova are extremely dense, old stars called white dwarves. But a number of models have been proposed to explain what makes them suddenly blow up.

Ultraviolet observation enabled the researchers to see something they had never seen before: a unique, brief spike in the high-energy radiation very early on. This spike, says Gal-Yam, fits a model in which a dwarf star has a giant companion. "The white dwarf is the mass of the Sun packed into a sphere the size of the Earth, while its companion is around 50-100 times bigger around than the Sun."

Material flows from the diffuse star to the dense one until, at some point the pressure from the added mass causes the smaller star to detonate. The radiation spike is caused by the initial material thrown off in the blast slamming into the companion.

Gal-Yam says that the group's findings show, among other things, the importance of ultraviolet-range observations. He is hopeful that the ULTRASAT mini-satellite planned by the Weizmann Institute's Prof. Eli Waxman, together with other researchers, the Israeli Space Agency and NASA, which will observe in the ultraviolet range, will help researchers discover whether this explosive process is common to type Ia supernovae.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Weizmann Institute of Science
Stellar Chemistry, The Universe And All Within It






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








STELLAR CHEMISTRY
Giant galaxy is still growing
Paris (SPX) Jun 28, 2015
Astronomers expect that galaxies grow by swallowing smaller galaxies. But the evidence is usually not easy to see - just as the remains of the water thrown from a glass into a pond will quickly merge with the pond water, the stars in the infalling galaxy merge in with the very similar stars of the bigger galaxy leaving no trace. But now a team of astronomers led by PhD student Alessia Lon ... read more


STELLAR CHEMISTRY
Research findings point way to designing crack-resistant metals

Physicists fine-tune control of agile exotic materials

JPL, Caltech Team Up to Tackle Big-Data Projects

What your clothes may say about you

STELLAR CHEMISTRY
Fourth MUOS arrives in Florida for August launch

Airbus DS unveils new mobile welfare communication portfolio

Britain looks to replace tactical radios

Lockheed, Raytheon, Bombardier team for JSTARS contract bid

STELLAR CHEMISTRY
More Fidelity for SpaceX In-Flight Abort Reduces Risk

Rocket Lab Announces World's First Commercial Launch Site

NovaWurks and Spaceflight Services set for payload test bed mission in 2017

SpaceX rocket explodes after launch

STELLAR CHEMISTRY
Global Positioning System: A Generation of Service to the World

China's Beidou navigation system more resistant to jamming

Blind French hikers cross mountains with special GPS

GPS Industries Launches Troon Connectivity Program

STELLAR CHEMISTRY
US military on defensive over F-35 fighter jet

Australia orders airborne refueling tankers

CAE producing P-8A simulator trainer hardware

E-2D aerial refueling capability passes CDR

STELLAR CHEMISTRY
With 300 kilometers per second to new electronics

Biomanufacturing of CdS quantum dots

KAIST team develops the first flexible phase-change random access memory

Stanford engineers find a simple yet clever way to boost chip speeds

STELLAR CHEMISTRY
Sentinel-2A completes critical first days in space

Oregon experiments open window on landscape formation

Beijing Quadrupled in Size in a Decade

A New Era of Space Collaboration between Australia and US

STELLAR CHEMISTRY
The Good, the Bad, and the Algae

Water used for hydraulic fracturing varies widely across United States

China's footprint getting greener

US Supreme Court rejects EPA mercury emissions limits




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.