Space Industry and Business News  
TIME AND SPACE
See the cosmos with X-ray vision
by Elizabeth Tasker for The Conversation
Sapporo, Japan (SPX) Feb 26, 2016


Prior to launch, the satellite telescope was designated ASTRO-H, where the "H" recognises it as JAXA's eighth planned space observatory, six of which have been X-ray satellites. On the launch day, the Japanese space agency announced the telescope's new name was Hitomi, which is Japanese for the pupil of the eye, as it will be the aperture used to explore the X-ray universe.

In June 1962, an Aerobee 150 sounding-rocket blasted above the Earth's atmosphere from the White Sands Missile Range in the United States of America. During its five-minute flight, the small research craft aimed to detect X-rays fluorescing from the moon. What it found instead would take a decade to explain. X-rays are an extremely high-energy form of electromagnetic radiation. While visible light, from violet to red, has a wavelength of between 400 and 700 nanometers, X-ray wavelengths stretch from only 0.1 to 10 nanometers.

Radiation from the sun extends over both spectrums, but the energy in X-rays is a millionth of that emitted in visible light. The X-rays that reach the Earth are unable to penetrate through our atmosphere, so exploration of cosmic sources needs to be done from space. Despite being a hundred times more sensitive than previous attempts, no one expected the X-ray detector on board the Aerobee 150 to see many cosmic X-ray sources.

Even if our nearest star, Sirius, emitted X-rays as luminous as its visible light (unlikely given the sun's 1:1,000,000 ratio), it was still far too dim to be seen. Instead, the rocket was hoping to see the moon's fluorescence due to the incident X-rays from the sun. But the data rolled in to reveal another source in the sky.

A mysterious source
Named Scorpius X-1, this X-ray source was so strong that if its ratio to visible light had matched that of the sun, its brightness would have rivalled the moon from its position 9,000 light years away. This was a whole new type of cosmic engine and marked the birth of X-ray astronomy.

Scorpius X-1 would eventually reveal itself to be a binary of two stars in close orbit. One member of the pair had reached the end of its life and collapsed to form an immensely dense object known as a neutron star.

Its strong gravity was pulling gas off its stellar twin, which gained energy as it descended towards the neutron star, like a stone speeding up as it drops from a tall building. The energy was heating the gas to millions of degrees, causing it to radiate X-rays.

X-ray astronomy moved from short-lived rockets to satellite observatories over the two decades following the Aerobee launch. NASA launched its Einstein observatory in 1978, and in 1979, Japan launched the first of its X-ray telescopes, Hakucho.

These satellites revealed that the darkest regions in the universe were bursting with high-energy activity. The space between clusters of galaxies turned out to be filled with incredibly hot gas that contained more mass than all the cooler optically-visible matter combined.

Gas was seen spiralling into neutron stars like Scorpius X-1 and swirling around their even more mysterious cousins, black holes.

Launch of a new telescope
The intrigue of this high-energy side of our universe continues and on the evening of February 17 this year, the Japanese Aerospace Exploration Agency (JAXA) launched its sixth X-ray observatory, Hitomi. The telescope is part of an international collaboration with NASA, the European Space Agency (ESA) and a number of other countries.

The satellite will orbit at an altitude of 575 kilometres, taking roughly an hour and a half to circle the Earth. On board are four telescopes of two different types.

Two telescopes focus the soft lower energy X-rays, while the second pair focus the higher energy hard X-rays. There is also a detector for the presence of the even higher energy gamma rays. In total, this allows Hitomi to be sensitive to an impressively broad range of wavelengths between 4 nanometres to 0.002 nanometres.

In addition to forming images, the soft X-ray telescope can measure the strength of the received X-rays at different wavelengths. This process is known as spectrometry and is equivalent to measuring the different strength of colours in the spectrum of visible light.

The spectrometer on-board Hitomi is about 50 times more sensitive for spread-out sources than previous missions, making it the first satellite able to measure the spectra from objects, such as galaxy clusters, in addition to bright point sources like Scorpius X-1.

Such measurements will allow far more accurate values to be placed on the energy in the hot gas, revealing the dynamics of cluster interactions and star formation.

A name change for Hitomi
Prior to launch, the satellite telescope was designated ASTRO-H, where the "H" recognises it as JAXA's eighth planned space observatory, six of which have been X-ray satellites.

On the launch day, the Japanese space agency announced the telescope's new name was Hitomi, which is Japanese for the pupil of the eye, as it will be the aperture used to explore the X-ray universe.

When announcing Hitomi's new name, the agency related an ancient folktale about a painter who drew four dragons, but did not include their pupils.

People who looked at the painting said "why don't you paint Hitomi, it is not complete!" The painter hesitated, but people pressured him. The painter then drew Hitomi on two of the four dragons. Immediately, these dragons came to life and flew up into the sky. The two dragons without Hitomi remained still.

Clearly, the hitomi represented the key part of the painting, as the new Hitomi telescope will surely be on understanding the high-energy universe.

The Conversation


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
The Conversation
Understanding Time and Space






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
TIME AND SPACE
Glow from the Big Bang Allows Discovery of Distant Black Hole Jet
Boston MA (SPX) Feb 18, 2016
Astronomers have used NASA's Chandra X-ray Observatory to discover a jet from a very distant supermassive black hole being illuminated by the oldest light in the Universe. This discovery shows that black holes with powerful jets may be more common than previously thought in the first few billion years after the Big Bang. The light detected from this jet was emitted when the Universe was on ... read more


TIME AND SPACE
Real or virtual - can we tell the difference

Breakthrough in dynamically variable negative stiffness structures

Study shows dried plums provide protection from bone loss due to radiation

Russian Space Intelligence Center to Receive New Radars

TIME AND SPACE
US Army Pacific exercise highlights joint communications for Pacific Theater

ViaSat tapped to provide tactical terminals for Apache helicopters

Harris wins place on military communications contract

General Dynamics MUOS-Manpack radio supports government testing of MUOS network

TIME AND SPACE
SpaceX warns of failure in Wednesday's rocket landing

SpaceX postpones rocket launch until Thursday

Russian rocket engines ban could leave US space program in limbo

Launcher and satellite preparations continue for Ariane 5's mission with EUTELSAT 65 West A

TIME AND SPACE
NASA Contributes to Global Navigation Standard Update

Sea level mapped from space with GPS reflections

Wirepas launches a dedicated connectivity product for beacons

Better, faster tsunami warnings possible with GPS

TIME AND SPACE
Raytheon bids to provide new trainer jet to USAF

Bell, BAE to cooperate on military rotorcraft in Australia

Bat flight inspires micro air vehicle design

Airbus delivers third and final C295 to Philippine Air Force

TIME AND SPACE
Topological insulators: Magnetism is not causing loss of conductivity

Chipmaker Marvell pays $750 to settle patent suit

Scientists create ultrathin semiconductor heterostructures for new technologies

Scientists train electrons with microwaves

TIME AND SPACE
Third Sentinel satellite launched for Copernicus

Sentinel-3A poised for liftoff

New Satellite-Based Maps to Aid in Climate Forecasts

Consistency of Earth's magnetic field history surprises scientists

TIME AND SPACE
China environment film smashes box office records

New bacterial pump could be used to remove cesium from the environment by light

Cameroon football great Milla giving plastic waste the red card

Brazil prosecutor threat to torpedo $5 bn dam burst settlement









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.