Subscribe free to our newsletters via your
. Space Industry and Business News .




CYBER WARS
Secure communication technology can conquer lack of trust
by Staff Writers
Singapore (SPX) Jan 04, 2013


illustration only

Many scenarios in business and communication require that two parties share information without either being sure if they can trust the other. Examples include secure auctions and identification at ATM machines.

Exploiting the strange properties of the quantum world could be the answer to dealing with such distrust: researchers at the Centre for Quantum Technologies (CQT) at the National University of Singapore have used the quantum properties of light to perform the world's first demonstration of a 'secure bit commitment' technology. The work is described in Nature Communications.

Secure bit commitment is equivalent to making a sealed bid in an auction. One party, usually known as Alice, 'commits' some information (a bit) to another party, usually known as Bob, with Alice later choosing when to reveal that bit.

A bit commitment protocol is secure if Bob can't learn anything about the bit until Alice reveals it, and if Alice can't change the bit between committing and revealing it.

Compare this with a sealed-bid auction: the bidder must commit to an amount they will pay, and they should remain the only one who knows what the amount is until all the bids are revealed. This is desirable, because a dishonest auctioneer or anyone who accessed the information early could influence the bidding.

At the same time, we want to make sure that the bidder cannot change the bid depending on any news he receives later on. This means that we cannot simply solve the problem by allowing the bidder to keep hold of their bid, because they might be dishonest and change the amount.

Traditional solutions to this problem - think sealed envelopes or data held by a third party - always depend on trust. Indeed, it has been proven that with classical information alone there is no solution that can totally protect the bidder and the bid receiver from unscrupulous behaviour.

In the demonstration, Alice communicates with Bob using photons, the particles of light. Alice creates pairs of photons that have the quantum property of being entangled, meaning that the photons' properties are connected even when they are separated. Alice splits each pair, keeping one photon and sending its entangled partner to Bob.

Alice encodes her 'bid' in her photons in such a way that Bob can only access the bid when Alice gives him instructions to decode his photons. But Bob can learn enough from his photons beforehand to know whether Alice is trying to cheat when she sends the instructions, say by using a different decoding. This way, both parties are protected from dishonesty.

The experiments were led by two Principal Investigators at CQT: Stephanie Wehner, who had earlier proposed a key theoretical requirement for secure bit commitment, and Christian Kurtsiefer, whose experimental group has expertise in creating entangled photons pair.

Wehner's idea was that secure bit commitment is possible with just one realistic, physical assumption: that anyone trying to cheat has limited ability to store quantum photons. (The quantum entanglement isn't enough on its own.) She proposed and developed this idea of 'noisy storage' in earlier papers.

"I wanted to demonstrate that secure bit commitment with the noisy storage model can work in the real world," says Wehner.

With the experimental support from Kurtsiefer's group, it did. The team's Alice and Bob used 250,000 pairs of entangled photons to commit a bit secure against a memory of 972 quantum bits suffering a certain noise.

Quantum memories aren't even that big today, but if they got better, security could be restored by increasing the number of photons. The demonstration is a proof-of-principle that points towards a possible quantum technology for secure communication in our future.

Reference: Huei Ying Nelly Ng et al, "Experimental implementation of bit commitment in the noisy-storage model", Nature Communications doi:10.1038/ncomms2268 (2012); preprint available at arXiv:1205.3331.

.


Related Links
Centre for Quantum Technologies at the National University of Singapore
Cyberwar - Internet Security News - Systems and Policy Issues






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








CYBER WARS
Israel to train young 'cyberwarriors'
Jerusalem (UPI) Jan 2, 2013
Israel says it has started a program to teach teenagers to be "interceptors" of cyberattacks by teaching them cyberwarfare techniques. Prime Minister Binyamin Netanyahu, speaking at the Ashkelon Academic College, said the 3-year program, known as "Magshimim Le'umit," is aimed at outstanding pupils aged 16-18, the Jerusalem Post reported Tuesday. "Israel's vital systems are under ... read more


CYBER WARS
COM DEV wins commercial contract from MacDonald Dettwiler and Associates

Thai 'scavengers club' turns trash to treasure

Malaysia convoy in Australia rare earth plant protest

All Systems Go for Highest Altitude Supercomputer

CYBER WARS
China opens its version of GPS to public

Raytheon's US Navy satellite terminals reach Full Rate Production milestone

General Dynamics' 30,000th Combat Search and Rescue Radio Goes to Work for USAF

Europe launches major British military satellite

CYBER WARS
CSF Applauds Passage Of Risk-Sharing Regime Extension For Launch Industry

Rokot Launch Set for January 15

Russian rocket launch rescheduled

Investigation into Proton Launch Anomaly Continues as Root Cause is being Evaluated

CYBER WARS
Beidou's unique services attractive to Chinese companies

China eyes greater market share for its GPS rival

Researchers told to ward off navigation system interference

Beidou helps put region on the map

CYBER WARS
HAL building more Su-30 MKI fighters

Russian Air Force Gets First Six Su-35S Fighter Jets

Boeing Receives Additional US Navy Order for Torpedo Defense Systems

Taiwan, China airlines team up on lucrative routes

CYBER WARS
Researchers demonstrate record-setting p-type transistor

Marvell hit with billion-dollar verdict in patent case

Physicists take photonic topological insulators to the next level

China shows electronic circuit advance

CYBER WARS
Google maps New Year's resolutions around the world

Mission Accomplished for Landsat 5

Hyundai, Kia to go with Google Maps

Satellites eye Great Lakes invasive plant

CYBER WARS
Tehran governor orders shutdown over pollution

Groundbreaking air-cleaner saves polluting industrials

Wood-burning sets off pollution alarm bells in Athens

Russia identifies main environmental risks




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement